OPERATIONS RESEARCH

Open Elective – I

Coursecode	23ME2501	Year	III	Semester	I
Course category	Open Elective-I	Branch	ME	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes:						
At the end	At the end of the course, student will be able to						
CO Statement							
CO1	Understand the basics of linear programming, transportation, queuing, sequencing of jobs, replacement and simulation problems	L2					
CO2	Apply linear programming, transportation and assignment models to solve real life problems	L3					
CO3	Apply Sequencing, queuing, Game and Replacement and project management theories to solve problems	L3					
CO4	Apply dynamic programming and simulation models	L3					

Contril	Contribution of Course outcomes towards the achievement of program outcomes												
&Strength of correlations (High:3,Medium:2, Low:1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3							3	2		3	2
CO2	3	3							3	2		3	2
CO3	3	3							3	2		3	2
CO4	3	3			·				3	2		3	2
CO5	3	3							3	2		3	2

SYLLABUS					
UNIT	Contents	Mapped CO			
I	INTRODUCTION - definition— characteristics and phases — types of operation research models — applications.	CO1 CO2			
_	Linear programming: Problem formulation – graphical solution – simplex method –				
	artificial variables techniques -two-phase method, big-M method – duality principle.				
	TRANSPORTATION PROBLEM: Formulation – optimal solution, unbalanced	CO1			
П	transportation problem – degeneracy,	CO2			
	assignment problem – formulation – optimal solution - variants of assignment problem-				
	travelling salesman problem.				
	SEQUENCING – Introduction – flow –shop sequencing – n jobs through two machines				
	-n jobs through three machines $-$ job shop sequencing $-$ two jobs through 'm'				
	machines.				

	REPLACEMENT THEORY: Introduction – replacement of items that deteriorate with	CO1
	time – when money value is not counted and counted – replacement of items that fail	CO ₃
III	completely, group replacement.	
111	GAME THEORY: Introduction – mini. max (max. mini) – criterion and optimal	
	strategy – solution of games with saddle points – rectangular games without saddle	
	points – 2 x 2 games – dominance principle – m x 2 & 2 x n games -graphical method.	
	WAITING LINES: Introduction – single channel – poison arrivals – exponential	CO1
	service times – with infinite population and finite population models– multichannel –	CO4
IV	poison arrivals – exponential service times with infinite population single channel.	
1 1	PROJECT MANAGEMENT: Basics for construction of network diagram, Program	
	Evaluation and Review Technique (PERT), Critical Path Method (CPM) – PERT Vs.	
	CPM, determination of floats- Project crashing and its procedure.	
	DYNAMIC PROGRAMMING: Introduction – Bellman's principle of optimality –	CO1
	applications of dynamic programming: shortest path problem – linear programming	CO5
V	problem.	
	SIMULATION: Definition – types of simulation models – phases of simulation–	
	applications of simulation – advantages and disadvantages	

Learning Resourses

Text Books:

- 1. Operations Research-An Introduction/Hamdy A Taha/Pearson publishers
- 2. Operations Research Theory & publications / S.D. SharmaKedarnath/McMillan publishers India Ltd

References:

- 1. Introduction to O.R/Hiller &Libermann/TMH
- 2. Operations Research / A.M. Natarajan, P. Balasubramani, A. Tamilarasi / Pearson Education.
- 3. Operations Research: Methods & Problems / Maurice Saseini, ArhurYaspan& Lawrence Friedman/Wiley
- 4. Operations Research / R.Pannerselvam/ PHI Publications.
- 5. Operations Research / Wagner/ PHI Publications.
- 6. Operation Research /J.K.Sharma/Macmillan Publ.
- 7. Operations Research/Pai/Oxford Publications
- 8. Operations Research/S Kalavathy / Vikas Publishers
- 9. Operations Research / DS Cheema/University Science Press
- 10. Operations Research / Ravindran, Philips, Solberg / Wiley publishers