ELECTRIC DRIVES

Course Code	23EE4602A	Year	III	Semester	II
Course Category	Professional Elective -III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	PE,DM&T, I&SM
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Demonstrate the fundamentals of electric drive and different electric Braking methods. (L2)					
CO2	Analyze the concepts of Load torque, Four quadrant operation and braking methods of electric drive. (L4)					
CO3	Analyze the operation of three-phase converter fed dc motors and four quadrant operations of dc motors using dual converters, DC-DC converter fed control of dc motors in various quadrants of operation. (L4)					
CO4	Analyze the concept of speed control of induction motor by using AC voltage controllers and voltage source inverters and differentiate the stator side control and rotor side control, concepts of speed control of synchronous motor with different methods. (L4)					
CO5	Ability to understand the Fundamentals, Rectifiers, Choppers, Inverters and AC to AC converters applied to Electrical motors and submit a report.					

(Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	2	3				1	1					2	3	2
CO3		3										2	3	2
CO4		3										2	3	2
CO5									3	3			3	2

SYLLABUS						
Unit No.	Contents	Mapped CO				
Ι	Fundamentals of Electric Drives Electric drive and its components— Fundamental torque equation — Load torque components — Nature and classification of load torques — Steady state stability — Load equalization— Four quadrant operation of	CO1 CO2 CO5				

	drive (hoist control) – Braking methods: Dynamic Braking, Plugging						
	and Regenerative Braking -Numerical problems.						
	Converter Fed DC Motor Drives						
II	3-phase half and fully-controlled converter fed separately and self-						
	excited DC motor drive - Output voltage and current waveforms -						
	Speed-torque characteristics and expressions – 3-phase Dual converter						
	fed DC motor drives – Numerical	CO ₅					
	DC-DC Converter Fed DC Motor Drives						
	Single quadrant, two quadrant and four quadrant DC-DC converter fed						
III	separately excited and self-excited DC motors – Continuous Current						
111	Mode of operation - Output voltage and current waveforms - Speed-						
	torque characteristics and expressions - Closed loop operation	CO5					
	(qualitative treatment only) – Numerical problems.						
	Control of 3-phase Induction motor Drives						
	Stator voltage control using 3-phase AC voltage regulators –						
	Waveforms -Speed torque characteristics- Variable Voltage Variable						
IV	Frequency control of induction motor by PWM voltage source inverter	CO1					
	- Closed loop V/f control of induction motor drives (qualitative	CO4					
	treatment only). Static rotor resistance control – Slip power recovery	CO ₅					
	schemes – Static Scherbius drive – Static Kramer drive – Performance						
	and speed torque characteristics- Numerical problems.						
	Control of Synchronous Motor Drives						
	Separate control of synchronous motor – self-control of synchronous	CO1					
V	motor employing load commutated thyristor inverter - closed loop	CO4					
	control of synchronous motor drive (qualitative treatment only)-	CO5					
	PMSM: Basic operation and advantages – Numerical problems.						

Learning Resources

Text Books:

- 1. Fundamentals of Electric Drives G K Dubey Narosa Publications 2nd edition 2002.
- 2. Power Semiconductor Drives S.B.Dewan G.R.Slemon A.Straughen Wiley India 1984.

Reference Books:

- 1. Electric Motors and Drives Fundamentals Types and Apllications by Austin Hughes and Bill Drury Newnes.4th edition 2013.
- 2. Thyristor Control of Electric drives Vedam Subramanyam Tata McGraw Hill Publications 1987.
- 3. Power Electronic Circuits Devices and applications by M.H.Rashid PHI 3rd edition 2009.

E-Resources:

- 1. https://archive.nptel.ac.in/courses/108/104/108104140
- 2. https://nptel.ac.in/courses/108104011