COMPUTER ARCHITECTURE AND ORGANIZATION

Course Code	23EE4501C	Year	III	Semester	I
Course Category	PE-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
	Upon successful completion of the course, the student will be able to					
CO1	Explain the foundational principles of computer architecture and organization, including instruction cycles, processing units, memory, and I/O systems (L2)					
CO1	instruction cycles, processing units, memory, and I/O systems (L2)					
CO2	Apply register transfer and microoperation techniques to interpret control logic and					
CO2	data flow in computer systems (L3)					
CO2	Analyze pipelining and parallel processing mechanisms to evaluate their impact on					
CO3	processor performance (L4)					
CO4	Apply interfacing techniques and memory system concepts to develop efficient					
CO4	communication between system components. (L3)					
COS	Prepare and submit a technical report demonstrating comprehensive understanding of computer architecture and organization					
CO5	of computer architecture and organization					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	
CO3		3											2	
CO4	3												2	
CO5									3	3				

	SYLLABUS						
Unit No.	Contents						
	BASIC COMPUTER ORGANIZATION AND DESIGN						
	Instruction Codes, Computer Registers, Computer Instructions, Timing and						
I	Control, Instruction Cycle, Memory-Reference Instructions, Input- Output and						
	Interrupt, Complete Computer Description, Design of Basic Computer, Design						
	of Accumulator Logic.						
TT	REGISTER TRANSFER AND MICRO OPERATIONS						
II	Register Transfer Language, Register Transfer, Bus and Memory Transfers,	CO2					

	Arithmetic Micro operations, Logic Micro operations, Shift Micro operations,							
	Arithmetic Logic Shift Unit.							
	Micro programmed Control: Control Memory, Address Sequencing, Micro							
	program Example, Design of Control Unit							
	CENTRAL PROCESSING UNIT							
	Introduction, General Register Organization, Stack Organization, Instruction							
777	Formats, Addressing Modes, Data Transfer and Manipulation, Program	CO1 CO3						
III	Control, Reduced Instruction Set Computer (RISC) Pipeline and Vector							
	Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction	CO5						
	Pipeline, RISK Pipeline, Vector Processing, Array Processors.							
	INPUT/OUTPUT ORGANIZATION							
	Peripheral Devices, I/O interface, Asynchronous data transfer, Modes of	CO1						
IV	transfer, priority Interrupt, Direct memory access, Input-Output Processor	CO4 CO5						
	(IOP), Serial Communication.							
	MEMORY ORGANIZATION							
V	Memory Hierarchy, Main memory, Auxiliary memory, Associate Memory,	CO1 CO4						
	Cache Memory, and Virtual memory, Memory Management Hardware.	CO ₅						

Learning	Resources

Textbooks:

1. M. Morris Mano, "Computer System Architecture", Prentice Hall of India Pvt. Ltd., 3rd Edition, Sept. 2008

Reference Books:

- 1. William Stallings, "Computer Architecture and Organization", PHI Pvt. Ltd., Eastern Economy Edition, Sixth Edition, 2003.
- 2. Linda Null, Julia Lobur, "Computer Organization and Architecture", Narosa Publications.
- 3. John. P. Hayes, "Computer System Organization", Mc GrawHill, 3rd edition, 2017.