## RENEWABLE ENERGY RESOURCES

| Course<br>Code                        | 23EE4501B | Year                           | III   | Semester        | I                 |
|---------------------------------------|-----------|--------------------------------|-------|-----------------|-------------------|
| Course<br>Category                    | PE-I      | Branch                         | EEE   | Course Type     | Theory            |
| Credits                               | 3         | L-T-P                          | 3-0-0 | Prerequisites   | Power Systems - I |
| Continuous<br>Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70    | Total<br>Marks: | 100               |

| Course Outcomes                                                       |                                                                                                                                         |  |  |  |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Upon successful completion of the course, the student will be able to |                                                                                                                                         |  |  |  |  |
|                                                                       | Understand the fundamentals, significance, and working principles of various                                                            |  |  |  |  |
|                                                                       | renewable energy sources. (L2)                                                                                                          |  |  |  |  |
| COA                                                                   | <b>Apply</b> appropriate concepts to analyze the components and operations of solar, wind, and ocean energy systems. (L3)               |  |  |  |  |
| CO2                                                                   | wind, and ocean energy systems. (L3)                                                                                                    |  |  |  |  |
| CO3                                                                   | <b>Illustrate</b> the processes and technologies involved in biomass, geothermal, hydel,                                                |  |  |  |  |
|                                                                       | and hydrogen energy systems. (L3)                                                                                                       |  |  |  |  |
| CO4                                                                   | Analyze the potential, advantages, and limitations of emerging energy technologies                                                      |  |  |  |  |
| CO4                                                                   | Analyze the potential, advantages, and limitations of emerging energy technologies such as fuel cells, MHD, and storage systems. (L4)   |  |  |  |  |
| CO5                                                                   | Work effectively in a team and communicate technical information related to                                                             |  |  |  |  |
|                                                                       | Work effectively in a team and communicate technical information related to renewable energy systems through reports and presentations. |  |  |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1                                                                                                                             | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 |                                                                                                                                 |     |     |     |     |     |     |     |     |      |      |      |      |      |
| C02 | 3                                                                                                                               |     | 1   |     |     |     |     |     |     |      |      | 1    | 3    | 2    |
| CO3 | 3                                                                                                                               |     | 1   |     |     |     |     |     |     |      |      | 1    | 3    | 2    |
| CO4 |                                                                                                                                 | 3   | 1   |     |     |     |     |     |     |      |      | I    | 3    | 2    |
| C05 |                                                                                                                                 |     |     |     |     |     |     |     | 3   | 3    |      |      |      |      |

|             | SYLLABUS                                                                                                                                                                                                                                                                                                                                                                              |                             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                                                                                                                                              | Mapped<br>CO                |
| Ι           | SOLAR ENERGY  Overview of Solar Energy – Classification and significance of renewable energy sources, solar radiation at the Earth Surface - Equivalent circuit of a Photovoltaic (PV) Cell - I-V & P-V Characteristics - Solar Energy Collectors: Flat plate Collectors, concentrating collectors - Solar Energy storage systems and Applications: Solar Pond - Solar water heating. | CO1,<br>CO2,<br>CO4,<br>CO5 |
| II          | WIND ENERGY Introduction - basic Principles of Wind Energy Conversion, the nature of Wind - the power in the wind - Site selection considerations - basic components of Wind Energy Conversion Systems (WECS) - Classification – Applications,                                                                                                                                        | CO1,<br>CO2,<br>CO5         |

|     | Advantages and disadvantages of WECS.                                              |     |  |  |  |  |
|-----|------------------------------------------------------------------------------------|-----|--|--|--|--|
|     | BIOMASS, HYDEL AND GEOTHERMAL ENERGY                                               |     |  |  |  |  |
| III | <b>Biomass:</b> Introduction – Biomass resources-Biomass conversion technologies-  |     |  |  |  |  |
|     | Factors affecting Bio digestion.                                                   |     |  |  |  |  |
|     | <b>Hydro plants:</b> Basic working principle – Classification of Small Hydropower  |     |  |  |  |  |
|     | Stations-Advantages and disadvantages of small hydro plants.                       |     |  |  |  |  |
|     | Geothermal Energy: Introduction, Geothermal Sources - Applications -               |     |  |  |  |  |
|     | operational and Environmental problems.                                            |     |  |  |  |  |
|     | ENERGY FROM OCEANS, WAVES & TIDES:                                                 |     |  |  |  |  |
|     | Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) – methods -        |     |  |  |  |  |
|     | prospects of OTEC in India.                                                        |     |  |  |  |  |
| IV  | Waves: Introduction – Advantages and disadvantages of Wave energy - Wave           |     |  |  |  |  |
| 1 4 | Energy conversion devices.                                                         | CO5 |  |  |  |  |
|     | Tides: Basic principle of Tide Energy - Components of Tidal Energy- Advantages     |     |  |  |  |  |
|     | and limitations of tidal power generation                                          |     |  |  |  |  |
| V   | CHEMICAL ENERGY SOURCES                                                            |     |  |  |  |  |
|     | Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell - |     |  |  |  |  |
|     | types of Fuel Cells - Applications.                                                |     |  |  |  |  |
|     | Hydrogen Energy: Introduction - Methods of Hydrogen production - Storage           |     |  |  |  |  |
|     | and Applications                                                                   |     |  |  |  |  |
|     | Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation -             |     |  |  |  |  |
|     | Types.                                                                             |     |  |  |  |  |

| Learning | Resources   |
|----------|-------------|
| Learning | 11CSUUI CCS |

## **Text Books:**

- 1. G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011.
- 2. John Twidell& Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013.

## **Reference Books:**

- 1. S.P.Sukhatme&J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage, TMH, 2011.
- 2. John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts, Oxford, 2<sup>nd</sup> edition, 2013.
- 3. ShobaNath Singh, Non- Conventional Energy Resources, Pearson Publications, 2015.

## **E-Resources:**

- 1. https://archive.nptel.ac.in/courses/103/103/103103206
- 2. https://archive.nptel.ac.in/courses/103/107/103107157