POWER ELECTRONICS LAB

Course Code	23EE3551	Year	III	Semester(s)	I
Course Category	Professional Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	BEEE
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
	Upon successful completion of the course, the student will be able to					
CO1	Analyze characteristics of various power electronic devices and design firing circuits for					
CO1	SCR.(L4)					
	Analyze the performance of single-phase full converter, semi converter, dual converter,					
CO2	three-phase full-wave and half wave bridge converters with both resistive and inductive					
	loads. (14)					
CO2	Examine the operation of Single-phase AC voltage regulator and cycloconverter with					
CO3	resistive and inductive loads. (L3)					
CO4	Differentiate the working and control of Buck converter, Boost converter, square wave					
CO4	inverter and PWM inverter. (L3)					
CO5	Conduct experiments as a team / individual by using equipment available in the laboratory					
	and make an effective report based on experiments.					

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (3: High, 2: Medium, 1: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3		3		1							2	1
CO2	2	3		3		1						2	2	1
CO3	2	3		3		1						2	2	1
CO4	3			3		1						2	2	1
CO5									3	3				

Any 10 of the following experiments are to be conducted:

Syllabus						
Exp. No.	Contents	Mapped CO				
1	Characteristics of SCR - Power MOSFET & Power IGBT.	CO1 CO5				
2	R, RC & UJT firing circuits for SCR.	CO1 CO5				
3	Single -Phase semi-converter with R & RL loads.	CO2 CO5				

4	Single -Phase full-converter with R & RL loads.	CO2
		CO5
5	Three- Phase full-converter with R & RL loads.	CO2
		CO5
6	Single-phase dual converter in circulating current & non-circulating	CO2
0	current mode of operation.	CO5
7	Single-Phase AC Voltage Regulator with R & RL Loads.	CO3
/	Single-Finase AC Voltage Regulator with R & RL Loads.	CO5
8	Single-phase step down Cycloconverter with R & RL Loads.	CO3
0	Shight-phase step down Cycloconverter with K & KL Loads.	CO5
9	Boost converter in Continuous Conduction Mode operation.	CO4
9	Boost converter in Continuous Conduction Wode operation.	CO5
10	Buck converter in Continuous Conduction Mode operation.	CO4
10	Buck converter in Continuous Conduction Wood operation.	CO5
11	Single -Phase square wave bridge inverter with R & RL Loads.	CO4
1.1	Single -1 hase square wave bridge inverter with R & RL Loads.	CO5
12	Single - Phase PWM inverter.	CO4
12	Single - I hase I with inverter.	CO5
13	Three-phase bridge inverter with 120^{0} and 180^{0} conduction mode.	CO4
13	Three-phase orage inverter with 120° and 180° conduction mode.	CO5
1.4	SPWM control of Three-phase bridge inverter	CO4
14	of wivi condoi of Tinee-phase oriage inverter	CO5