POWER ELECTRONICS

Course Code	23EE3501	Year	III	Semester	I	
Course Category	Professional Core	Branch	EEE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE, ECA, CS	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to					
CO1	Demonstrate the concepts of various Power semiconductor devices and converters.					
	(L2)					
CO2	Apply the concept of Triggering methods, Snubber circuit, Two-Transistor analogy					
	and characteristics of devices. (L3)					
CO3	Analyze the operation of Single and Three phase phase-controlled rectifiers,					
	operation and design of different types of DC-DC converters. (L4)					
CO4	Analyze the operation of AC Voltage Controllers, Cycloconverters and operation of					
	inverters for voltage control. (L4)					
CO5	Ability to understand the characteristics of Power Semiconductor Switches, various					
	converters and submit a report.					

Contribution of Course Outcomes towards achievement of Program Outcomes &														
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3					1	1					2	3	2
CO3		3										2	3	2
CO4		3										2	3	2
CO5									3	3				

SYLLABUS						
Unit No.	Contents					
I	Power Semi-Conductor Devices Silicon controlled rectifier (SCR) – Two transistor analogy - Static and Dynamic characteristics – Turn on and Turn off Methods - Triggering Methods (R, RC and UJT) – Snubber circuit design- Numerical problems. Static and Dynamic Characteristics of Power MOSFET and Power IGBT.	CO1 CO2 CO5				
II	Single-phase AC-DC Converters Single-phase half-wave controlled rectifiers - R and RL loads with and without freewheeling diode - Single-phase fully controlled mid-point and bridge converter with R load, RL load - Continuous and Discontinuous conduction - Effect of source inductance in Single-phase fully controlled bridge rectifier - Expression for output voltages - Single-phase Semi-	CO1 CO3 CO5				

	Converter with R load-RL load – Continuous and Discontinuous conduction			
	- Dual converter and its mode of operation - Numerical Problems			
	Three-phase AC-DC Converters & AC – AC Converters			
III	Three-phase half-wave Rectifier with R and RL load - Three-phase fully			
	controlled rectifier with R and RL load - Three-phase semi converter with R	CO1		
	and RL load - Expression for Output Voltage - Numerical Problems.	CO3		
	Single-phase AC-AC power control by phase control with R and RL loads -	CO4		
	Expression for rms output voltage - Numerical Problems- Single-phase step	CO5		
	down and step up Cycloconverter with R and RL Loads – (principle of			
	operation).			
	DC-DC Converters			
	Operation of Basic Chopper - Analysis of Buck, Boost and Buck-Boost			
	converters in Continuous Conduction Mode (CCM) and Discontinuous	CO1		
IV	Conduction Modes (DCM) - Output voltage equations using volt-sec balance	CO3		
1,	in CCM & DCM – Expressions for output voltage ripple and inductor current	CO4		
	ripple -Numerical Problems – control techniques – Introduction to PWM	CO5		
	control.			
	DC-AC Converters			
V	Introduction - Single-phase half-bridge and full-bridge inverters with R and			
	RL loads - Numerical Problems – Phase Displacement Control – PWM with	CO1		
	bipolar voltage switching, PWM with unipolar voltage switching - Three-	CO4		
	phase square wave inverters - 120^{0} conduction and 180^{0} conduction modes	CO5		
	of operation - Sinusoidal Pulse Width Modulation - Current Source Inverter			
	(CSI)			

Text Books:

- 1. Ned Mohan, Tore M Undeland, William P Robbins, "Power Electronics: Converters, Applications and Design" by John Wiley & Sons, 2002.
- 2. M. H. Rashid, "Power Electronics: Circuits, Devices and Applications", Prentice Hall of India, 2nd edition, 2017.
- 3. L. Umanand, "Power Electronics: Essentials & Applications", Wiley Pvt. Limited, India, 2009

Reference Books:

- 1. Philip T.Krein. "Elements of Power Electronics", Oxford University Press; Second edition, 2014.
- 2. P. S. Bhimbra, "Power Electronics", Khanna Publishers.
- 3. G. K. Dubey, S. R. Doradla, A. Joshi and R. M. Sinha, "Thyristorised Power Controllers", New Age International (P) Limited Publishers, 1996.
- 4. Daniel W. Hart, "Power Electronics", Mc Graw Hill, 2011.

E-Resources:

- 1. https://ocw.mit.edu/courses/6-334-power-electronics-spring-2007
- 2. https://archive.nptel.ac.in/courses/108/101/108101126