RENEWABLE ENERGY SOURCES

Course Code	23EE2501	Year	III	Semester	I
Course Category	OE-I	Branch	Except EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	PS - I
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
	Upon successful completion of the course, the student will be able to					
	Understand the fundamentals, significance, and working principles of various renewable					
	energy sources. (L2)					
CO2	Apply appropriate concepts to analyze the components and operations of solar, wind, and					
	ocean energy systems. (L3)					
1 11 12	Illustrate the processes and technologies involved in biomass, geothermal, hydel, and					
	hydrogen energy systems. (L3)					
COA	Analyze the potential, advantages, and limitations of emerging energy technologies such as					
CO4	fuel cells, MHD, and storage systems. (L4)					
	Work effectively in a team and communicate technical information related to renewable					
	energy systems through reports and presentations.					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)									& &				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
C02	3		1									1	3	2
CO3	3		1									1	3	2
CO4		3	1									1	3	2
C05									3	3				

SYLLABUS					
Unit No.	Contents				
I	SOLAR ENERGY Introduction - Renewable Sources - prospects, solar radiation at the Earth Surface - Equivalent circuit of a Photovoltaic (PV) Cell - I-V & P-V Characteristics - Solar Energy Collectors: Flat plate Collectors, concentrating collectors - Solar Energy storage systems and Applications: Solar Pond - Solar water heating - Solar Green house.	CO1 CO2 CO4 CO5			
II	WIND ENERGY Introduction - basic Principles of Wind Energy Conversion, the nature of Wind - the power in the wind - Wind Energy Conversion - Site selection considerations - basic components of Wind Energy Conversion Systems	CO1 CO2 CO5			

	(WECS) - Classification - Applications.					
	BIOMASS, HYDEL AND GEOTHERMAL ENERGY					
III	Biomass: Introduction - Biomass conversion technologies- Photosynthesis.					
	Factors affecting Bio digestion.					
	Hydro plants: Basic working principle – Classification of hydro systems:					
	Large, small, micro hydel plants.					
	Geothermal Energy: Introduction, Geothermal Sources – Applications -					
	operational and Environmental problems.					
	ENERGY FROM OCEANS, WAVES & TIDES:					
	Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) -					
	methods - prospects of OTEC in India.					
IV	Waves: Introduction - Energy and Power from the waves - Wave Energy					
	conversion devices.					
	Tides: Basic principle of Tide Energy -Components of Tidal Energy.					
	CHEMICAL ENERGY SOURCES					
	Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell					
	- types of Fuel Cells - Applications.					
V	Hydrogen Energy: Introduction - Methods of Hydrogen production - Storage					
	and Applications					
	Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation					
	- Types.					

Learning	Resources
----------	-----------

Text Books:

- 1. G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011.
- 2. John Twidell& Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013.

Reference Books:

- 1. S.P.Sukhatme&J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage, TMH, 2011.
- 2. John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts, Oxford, 2nd edition, 2013.
- 3. ShobaNath Singh, Non-Conventional Energy Resources, Pearson Publications, 2015.

E-Resources:

- 1. https://archive.nptel.ac.in/courses/103/103/103103206
- 2. https://archive.nptel.ac.in/courses/103/107/103107157