Electronics Devices and Circuits

Course Code	23EC2501	Year	III	Semester	I
Course Category	OE-1	Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Pre requisites	
Continuous Internal	20	Semester End	70	Total Marks	100
Evaluation	30	Evaluation	/0	Total Warks	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
1 (() 1	Understand the semiconductor physics, their concepts and characteristics of p-n junction diode	L2			
CO2	Understand V-I characteristics of various semiconductor devices.				
CO3	Illustrate the operation of transistor and its characteristics in various configurations, Biasing of transistor	L3			
CO4	Analyze the transistor using h-parameters and its equivalent model.	L4			
CO5	Describe the operation of FET and MOSFET, their application as an amplifier.	L2			

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of Correlations (3:High, 2:Medium, 1:Low)													
											PO 11	PO 12	PSO 1	PSO 2
CO1	2											1	2	
CO ₂	2											1	2	
CO ₃	3											1	2	
CO4	3	3										1	2	
CO5	2											1	2	
Avg.	2	3										1	2	

Syllabus Unit **Contents** Mapped No. \mathbf{CO} Review of Semiconductor Physics: Mobility and Conductivity, Intrinsic and extrinsic semiconductors, Hall effect Junction Diode Characteristics: Energy band diagram of PN junction Diode, Open circuited p-n junction, Biased p-n junction, p-n junction 1 CO1,CO2 diode, current components in p-n junction Diode, Qualitative explanation of Diode equation (Derivation not required), V-I Characteristics, temperature dependence on V-I characteristics, Diode resistance, Diode capacitance. Special Semiconductor Devices: Zener Diode, Breakdown mechanisms, Zener diode applications, Varactor Diode, LED, Photodiode, Tunnel Diode 2 CO1,CO2 and its characteristics with the help of energy band diagram, UJT and its

	application, PNPN Diode, SCR, Construction, operation and V-I characteristics. Diode Circuits: Clipping (limiting) circuits, Peak Detector, Clamping circuits, Comparators, Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge rectifier, Inductor filter, Capacitor filter	
3	Transistor Characteristics: Junction transistor, transistor current components, transistor equation in CB configuration, transistor as an amplifier, characteristics of transistor in Common Base and Common Emitter configurations, punch through/ reach through, typical transistor junction voltage values. Transistor Biasing and Thermal Stabilization: Need for biasing, operating point, load line analysis, BJT biasing- methods, basic stability, fixed bias, collector to base bias, self bias, Stabilization against variations in V _{BE} , Ic, and β, Stability factors, (S,S',S'), Bias compensation, Thermal runaway, Thermal stability.	CO3,CO4
4	Small Signal Low Frequency Transistor Amplifier Models BJT: Two port network, Transistor hybrid model, determination of h- parameters, Millers theorem and Dual of Millers theorem, Analysis of CB, CE and CC amplifiers using exact analysis, Comparison of transistor amplifiers	CO3,CO4
5	FET: FET types, JFET operation and characteristics (qualitative explanation only), small signal model of JFET. MOSFET: MOSFET Structure, Operation of MOSFET, MOSFET as a variable resistor, derivation of V-I characteristics of MOSFET, Comparison of Bipolar and MOS devices. CMOS amplifiers: General Considerations, Common Source Stage, Common Gate Stage, Source Follower, comparison of FET amplifiers.	

Learning Resources

Text Books

- 1. J. Millman ,Electronic Devices and Circuits, C. C. Halkias, Mc-Graw Hill Education 1991.
- 2. J. Millman, C. Halkias ,Integrated Electronics-, Mc-Graw Hill Education. 2nd Ed., 2017.
- 3. BehzadRazavi ,Fundamentals of Microelectronics, Wiley, 3rd Ed.,, 2021.

Reference Books

- Robert L. Boylestad and LouiNashelsky, Electronics devices & circuit theory-, Pearson, 11th 5th Ed., 2015.
- 2. David A. Bell ,Electronic Devices and Circuits Oxford University Press, 5th Ed., 2008.
- 3. S. Salivahanan, N. Suresh Kumar ,Electronic Devices and Circuits-, Mc-Graw Hill, 5th Ed., 2022.

e-Resources & other Digital Material

- 1. https://nptel.ac.in/courses/117106086
- 2. https://nptel.ac.in/courses/108105058