
st
0 st .. "" "' c..

.......
........

"O

~
........

"O

<!)

~ -

V
)

...... V
)

.
-

...... V
)

......
~ 0 8

........
0 o

........
0 o

........
0 o

.......
.......

Ooo
Uuu

.......
0 o

st
0 "' c..

.......
0 o

~
~

~
~

V
)

V
)

V
)

V
)

~
("()

("()
-.:t"

0
0

0
0

o
o

o
o

~
N

N

:s

....:l
....:l

....:l
..Cl

"O

V
)

<!)
i::::

I-<
o

i::::
.<;::::

(
<!)

.9
<!)

a
C<:l

I-<
0..

......
......

0
<!)

"O

:::,
I-<

V
)

<!)
s:l

0
0..

ell
i::::

d)

~
I-<

V
)

.8
......

0.
<!)

00
I-<

..Cl
i::::

(.)
s:l

s
......

>
E

:.a
0..

......
......

-
ell

i::::
~

I
..0

V
)

u;
<!)

><
0

t:=
V

)
ell

<!)
~

..Cl
<!)

"O

..Cl
I-<

:§
~

8
0

t+--<
.8

0
~ -

00
-

s:l
......

0
o

s:l
0

E
0

..Cl
......

V
)

......
o

..Cl
<!)

......
......

......
......

V
)

C
l)

<!)
o

0..
C

l)
I-<

~
......

ell
.b

<!)
<!)

C<:l
:::,

i:l
..Cl

0..
o

......
(.)

i::::
~

c
C

l)
i::::

ell
<!) ·a

<!)
0

"O

I-< -
~

i::::
ell

I-<
o

0..
......

i::::
s:l

~
·-

><
......

:0
..Cl

<!)
V

)
u.:i

"O

v.i
..Cl

<!)
<!)

C
l)

......
o

0
v.i

......
0

......
C'-·

<!)
<!)

~
~

"O
 -

<!)
:::,

<!)

a
.9

0
ell

...... ell
o<-

......
......

t::
V

)

] a
s

ell
ell

I-<
t::

C
l)

I-<
........

0
~

<!)
C

l)
<!)

<!)
~

0..
>

:::,
o

C<:l
0

<!)
0..

8
0

ell
:::r:

-
<!)

><
o

I-<
u.:i

t::
i=l

......
0

......
......

<!)

,-.._
,-.._

~
,-.._

ell
..0

..0

0
.......

.......
.......

N
 "' 0 ·e ee

0 c:: 0
·.c ~
&

0 r-

- 0 N

(")
C

l)
o (")
N

 0
"'O

8 - ~ B (")
N

- 0 ~ (")
N

 - 0 N

(")
C

l)
Q

(")
N

o 0 N

o 0 vJ

o 0 \.,
.) r N

o 0 vJ

o 0 vJ

o 0 vJ

o 0 vJ

......

0

......
.

()

.§
0

.....
..

t:l

(1
)

~

S
2

(1
)

o
t:l

.-+

......

~

~

o 0 \.,
.)

....
...

0
s

"d

'O

(1
)

~;
 s
p-

.
(1

)
0

....
:::s

:=;.

Cl
l

o
~

0
s:

s:
~

p

Cl
l

o 0 N

~ Cl
l

(1
) 0.

00

o 0

o 0

o 0 N

o 0

o 0 \.,
.)

o 0

r N

0 ~

.....
......

.....

..:..
...

......
.

e
'--

'
<;

»

~
......

~

Cl
l

~
~

i'
~

(1
)

~
~

.....
.....

.
-

en·
Cl

l
......

.
(1

)
'O

~ - Cl

l
..a

......

~

~
......

~

0
sr

t:T
'

g
er

 -
.......

t:l

(1

)
(1

)
t:l

o

(1
)

s
~

......

er
 0

.
......

.
~

0
Cl

l
0

0.

Cl
l

t:l

(1
)

(1
)

0
(l)

·...

:>
Cl

l
(1

)

el
(')

t:l

Cl

l
0

0
~

o
t:l

......

t:T

'
0.

·...:

>
o

::t
......

.
~·

......

(l)

......

.
g

0
(l)

t:l

-

,....
...._

e;

to

<Y

C
l)

......

'§

.....,

<;
»

~
g

-c

.....
.

(l)

(l)
 o

Cl
l

~
0

......

......
.

Cl
l

<
.....

..
(l)

< (l)

......

t:T

'
::t

~
(l)

.-+

(l)

~

r
r-

r
......

N

N

o
o

o
0

0
0

.....
.....

.
.....

0.

(1
)

Cl
l ~·

1

1.a) Define a linear data structure. (2M)
Definition - 2M

1.b) State the worst-case time complexity of Bubble sort (2M)
Time complexity- 2M

1.c) How is the last node of a circular linked list identified? (2M)

Property of last node or diagram which represents the property- 2M

1.d) Why does a doubly linked list require more memory than a singly linked list? (2M)
Any statement or diagram which states that DLL require 2 pointers while SLL require 1
pointer - 2M '
1.e) Why is stack implementation using linked list more memory efficient than arrays?
(2M)

Any statement which states that linked list implementation of stacks allocated
memory dynamically. -2M
l .t) Give an example of a balanced and an unbalanced parenthesis expression. (2M)

Any one example of a balanced parenthesis expression - 1 M
Any one example of unbalanced parenthesis expression - lM

1.g) What are the basic operations performed on a queue? (2M)
Any two operations -2M

1.h) What problem does a Circular queue solve that a Simple queue does not? (2M)

Any statement or diagram which states that circular queue solves the problem of
false overflow. -2M

Part A

Scheme of evaluation

2

S.a) Develop an algorithm to reverse a singly linked list and explain it (SM)
Algorithm/Pseudo code- 4M
Explanation -lM

OR
3 differences - SM

4.b) Compare arrays and linked lists based on memory usage, access time, and operations.
(SM)

Unit-2
4.a) Describe the structure of a doubly linked list and compare it with a singly linked

list. (SM)
structure of a doubly linked list - 2M
structure ofa singly linked list-2M
Comparison-lM

Or
Any S differences-SM

OR
3. a) Compare and contrast Linear and Binary Search with suitable examples. (SM)

Any S differences or explanation of linear search and binary search - SM

3. b) Write and explain the algorithm for Binary Search. (SM)

Algorithm/Pseudo code- 4 M
Explanation-lM

Importance - 2M
Definitions or examples - 3M

2.b) Explain Abstract Data Types (ADTs) with an example. (SM)

ADT definition - lM
Examples-2M
Explanation-2M

Unit-1
2. a) Describe the importance ofanalyzing time and space complexities in algorithm design.
(SM)

PartB

1.i) What is the base condition for a recursive tree traversal function? (2M)

Any statement which means that root is NULL-2M
1.j) What is a binary search tree (BST)? (2M)

Definition - 2M

3

Unit-5
10.a) Compare binary trees and binary search trees with respect to structure and
operations(SM)

Binary trees and binary search trees explanation- 3M
Comparison-2M

10.b) Explain the concept of hashing and its importance in data structures (SM)
Concept of hashing - 4 M

OR
9.a) Analyze the time complexity of various queue operations in both array and linked list
implementation. (SM)

Time complexity of any 5 queue operations - SM
9.b) Develop pseudo codes for enqueue, dequeue operations in a queue with linked list
implementation. (SM)

Enqueue pseudo code - 3M
Dequeue pseudo code - 2M

Unit-4
8.a) Explain the enqueue and dequeue operations in a queue with an example(SM)

enqueue defintion-lM
dequeue definition-IM
Example-3M

8.b) Illustrate the working of a circular queue with an example. (SM)
Explanation of enqueue and dequeue in circular queue - SM

Algorithm/Pseudo code/Explanation- 2M
Example-3M

7.b) Construct a C/C++/Python program to implement a stack using an array (SM)
Program-SM

6.b) Convert the following infix expression to postfix expression(SM)
a+ b * c/(d * e + f"g) - h * k

Correct answer-SM
Partially correct answer or correct procedure-3M

OR
7.a) How does a stack help in checking balanced parenthesis? Explain with an example.
(SM)

Unit-3
6.a) Explain the push and pop operations in a stack with an example(SM)

push defintion-1M
pop definition-1M
Example-3M

5. b) Explain how linked lists are used in dynamic memory allocation (SM)
Correct explanation- SM

4

11.b) Illustrate different collision resolution techniques with proper examples. (SM)
Closed hashing - 3M
Open hashing- 2M

11.a) How does recursion help in tree traversal? Explain with an example (SM)
Any recursive tree traversal - 3M
Example-2M

OR
Importance of hashing-lM

. .

1

l..t:-.l

-·~I !._____.j i~I 1--=--J ___ =i

l head

head.

1.c) How is the last node of a circular linked list identified? (2M)

Property of last node or diagram which represents the property - 2 M

The last node of a circular linked list is the node whose next pointer points to the

Time complexity - 2M
Worst-case time complexity of Bubble sort is O(n2) or O(n2)

1.b) State the worst-case time complexity of Bubble sort (2M)

Definition - 2M
A data structure in which elements are arranged sequenlially or linearly
is caJJed linear data structure.

1.a) Define a linear data structure. (2M)
Part A

2

1.i) What is the base condition for a recursive tree traversal function? (2M)

Any statement which means that root is NULL-2M
Base condition is "if(root=NULL) return"

A circular queue solves the space wastage problem of a simple queue by reusing empty
slots at the array's beginning through wraparound, avoiding false overflow.

l.h) What problem does a Circular queue solve that a Simple queue does not? (2M)

Statement-2M

Peek (Q): Returns the element at the front end of the queue Q.

IsEmpty(Q): Returns true if Q is empty and false otherwise.

lsFull(Q): Returns true if Q is ful1 and false otherwise.

Size(Q): Returns the number of elements in Q

Display(Q): Displays the elements of Q from front end to rear end

Dequeue(Q): Delete an element from the front end of the Queue Q.

l.g) What are the basic operations performed on a queue? (2M)
Any two operations -2M

Enqueue(Q, x):lnsert a new elementx at the rear end of the Queue Q.

1.t) Give an example of a balanced and an unbalanced parenthesis expression. (2M)

Any one example of a balanced parenthesis expression - lM.
For example, [{ }]
Any one example ofun balanced parenthesis expression - lM.
For example, [{)] .

A stack implemented using a linked list is more memory efficient than an array because
it dynamically allocates memory only for the elements present, avoiding the need for a
pre-allocated fixed-size array that may waste space

Statement-2M

l.e) Why is stack implementation using linked list more memory efficient than arrays?
(2M) .

A doubly linked list requires more memory because each node stores two pointers (one
for the next node and one for the previous node), whereas a singly linked list only stores
one pointer (for the next node).

l.d) Why does a doubly linked list require more memory than a singly linked list? (2M)
Statement or diagram - 2M

3

2.b) Explain Abstract Data Types (ADTs) with an example. (SM)

ADT definition - 1M
Examples-ZM

2. Space complexity:
The amount of memory or space that is needed to execute an

algorithm is called space complexity.
The space complexity S(P) of any algorithm P can be written as

S(P) = C + Sp(])
,Where C:Constant that denotes fixed part,

Sp(/)':Variable part that depends on instance characteristics(/).
Analysing time and space complexities in algorithm design is crucial for

evaluating an algorithm's efficiency and scalability. Understanding these complexities helps
us to choose the best algorithm for a problem, balancing speed and memory needs.

Importance - 2M
Definitions or examples - 3M

Performance of an algorithm is measured in 2 ways.
1. Time complexity 2. Space complexity

1. Time complexity:
The amount of time that is needed to execute an algorithm is called

time complexity. In general, time complexity of an algorithm is measured in
terms of the number of basic operations performed by the algorithm.

Unit-1
2. a) Describe the importance of analyzing time and space complexities in algorithm design.
(SM)

PartB

Definition - ZM
A binary search tree (BST) is a binary tree that satisfies the following

property.
1. The values. in the non-empty left subtree of a node are smaller than

the value in the node.
2. The values in the non-empty right subtree of a node are greater than

the value in the node.

1.j) What is a binary search tree (BST)? (2M)

4

OR
3. a) Compare and contrast Linear and Binary Search with suitable examples. (SM)

Any 5 differences or explanation of linear search and binary search - SM
Linear Search sequentially checks each element in the list until the target is found or the
list ends. It works on both sorted and unsorted arrays.

1. Queue: Queue is a linear data structure that follows the Fl FO (First In,
First Out) principle. This means that the element that is added to the queue
first is the one that gets removed first.
2. Stack: Stack is a linear data structure that follows the LIFO (Last In, First
Out) principle. This means that the last element that is added to the stack is
the one that gets removed first.
3. Tree: Tree is a hierarchical data structure that consists of nodes
connected by edges. It represents a collection of elements organized in a
tree-like structure, where each node has a parent and possibly multiple
children, except for the root node, which has no parent.
4. Graph: Graph is a collection of nodes and edges, where each edge
connects two nodes. The graph can be used to represent various
relationships between objects.
5. Hash Table: Hash Table is a data structure that stores data in an
associative manner using a key-value pairs. It uses a hash function to map
keys to specific locations (or buckets) in hash table.

Explanation-2M
An Abstract Data Type is a logical description of how data is

organized and the operations that can be performed on that data, without
specifying how those operations are implemented.
Examples: Queue, Stack, Tree, Graph, Hash Table

5

rj-~~ 1 h ,·3"' vvi / d
. ·- : I II !;:!:j../. :< h -x. / ().. [.-v1 j a J

I :;:2. Gtt::1 11:7 .:r/; g 'h-J· 514)) J °6)- I

~ " 7-,..11_ 1 -::t .c a C l'VI i cJ 1 -- - ~ G,c, h:,) ,g /:tJ.. ,Bu.lo) ,-_.,~

7 ~ 1,NJ_? ?: ? aCY't?i c1..:J -c :
Go +o ~,~p,+ 61.J b),'.5-9

t3 8 ~ ;:.& -z s:= a. c "YYI i d :J
£:J <!? rne: YI} ./rouYJd

1,j~ppo.:se +>-.~ Sao.,.-J.o~ a/4wt~VJ.J. iS .SS
H~ne V\ ::JJ ,, ~.::.5.5

?O b5 be;;;, 10

Binary Search, in contrast, requires a sorted array and works by repeatedly dividing the
search interval in half.

Le~ ~ Ct;,V1Sid&"T1

x = a[3] = 70
Elernent found at index i = 3. Re ru i-u i.

Novv i = 3.

Compare x with a[3)

x * a[2] = 60
Jrrcr-errre rrt i

Now i = 2.

Compare x with a[2]

x :t= a[1] = 20
Increment i

Now i = 1.

Compare x wit~1 a(l]

x :t= a[O] = 40
Increment i

10 90

Example:
Consider the following list of elements

40 20 60 70 50 80

Supposer the search element x = 70
Initially, i = 0.

Compare x with a[O]

6

Recursive version:
}

}
return(-1);

low=mid+l;

mid = llow+2highj;
i-f(x=a[mid])

rteturn(mid);
else if(x<a[mid])

high=mid-1;
else

Iterative version:
//a: Sorted array of size n
//~: Element to be searched
BinarySearch(a, n, x)
{

low=lj high=n;
while(low<=high)
{

3. b) Write and explain the algorithm for Binary Search. (SM)

Algorithm/Pseudo code- 4 M
Explanation- lM

Linear Search Binary Search

Linear search can be applied to Binary search can be applied to
both sorted and unsorted lists sorted lists only

Linear search is simple and Binary search is complex as
straight forward to implement compared to linear search

Linear search is slow process Binary search is fast process

More number of cornpartsons Less nurnbe r of comparisons I are required are required
Ti me Complexity: Time Complexity:

Best Case: 8 (1) Best Case:(:)(I)
Worst Case: 0(n) Worst Ca se: C-:>i, 11)g n)
Average Case: 8(n) Average Case: L0(Jog ») --

7

Node structure:
·I

Singly linked list:
In a singly linked list, each node(except the last node) contains only one
link which points to the subsequent node in the list. The link portion of the
last node contains the value NULL

Example:

hi>~d

structure of a doubly linked list - 2M
structure ofa singly linked list-2M
Comparison-lM

Or
Any S differences-SM

Unit-2
4.a) Describe the structure of a doubly linked list and compare it with a singly linked

list. (SM)

3. lfx > a{m1d),thensearchtherightsublist.

2. If A < aLrttidJ, then search the left sub list.

1. If x = a [mid], then return mid.

Element , is compared with a[1nid]

}

}
return(-1);

mid=(low + high)/2;
if(x=a[mid])

return(mid);
else if(x<a(mid])

return RBinarySearch(a, low, mid-1, x);
else

return RBina,·ysearch(a, mid+l, high, x);

if(low<=h-igh)
{

//a: Sorted Array of size n
//x: Element to be searched
//In main function, we call RBinarySearcl1(a,1,n,x)
RBinarySearch(a, low, high, x)
{

8

3 differences - SM

4.b) Compare arrays and linked lists based on memory usage, access time, and operations.
(SM)

Singly Linked List Doubly Linked List

Each node points only to the Each node points to both the
next node. next and previous nodes.

Node contains data and a next Node contains data, a next
pointer. pointer and a prev pointer

In SLL, we can traverse only in In DLL, we can traverse in both
one direction (forward). direction (forward and backward).

Requires less memory Requires more memory

Less flexible due to single- More flexible due to bidirectional
direction traversal. traversal.

-

};

struct node *prev;
int data;
struct node *next;

Node structure:
struct node
{

};
Doubly linked list:
In a doubly linked list, each node (except first and last nodes) contains two
links, one points to the next node and other points to the previous node.
Example:

3--- I int data;
struct node *next;

struct node
{

}

9

}
return (prev);

Time Complexity: 8(11)

nxt=curr->next;
curr->next=prev;
prev=curr;
curr=nxt;

if(head==NULL or head->next==NULL)
return(head);

curr=head; prev=NULL;
while(curr!=NULL)
{

Iterative version:
Reverselist(head)
{

OR
S.a) Develop an algorithm to reverse a singly linked list and explain it (SM)

Algorithm/Pseudo code- 4M
Explanation -lM

Array Linked List

Memory AUocation : Contiguous Memory Allocation: Non-contiguous
memory allocation. memory allocation

Size Flexibility: Fixed size (cannot be Size Flexibility: Dynamic size (can
resized dynamically). grow or shrink during runtime).

Storage Type: Static data structure. Storage Type: Dynamic data structure.

Access Time: Fast (0 (1) access using Access Time: Slow ((1p1) access,
index). requires traversal from the head).

Implementation: Simple to Implementation: More complex
implement and use. due to pointer management.

10

>- Linked lists play a key role in dynamic memory allocation by managing memory
blocks efficiently in systems like operating systems or memory allocators (e.g.,
malloc in C). They are used to track free and allocated memory blocks in a heap,
enabling flexible memory management.

,- In dynamic memory allocation, the heap is divided into blocks of memory, some
free and some allocated. A linked list of free blocks (often called a free list) is
maintained, where each node in the list represents a free memory block. Each
node contains the block's starting address, size, and a pointer to the next free
block. For example, if the heap has free blocks at addresses 100 (size 50) and 200
(size 30), the free list might look like: [100, 50] -> [200, 30] -> NULL.

>- When a program requests memory (e.g., via malloc), the allocator traverses the
free list to find a suitable block (using strategies like first-fit or best-fit). If a block
of size 40 is needed, the allocator might select the block at 100, allocate 40 bytes,
and update the free list to [140, 10] -> [200, 30] -> NULL (splitting the block). If
no suitable block is found, the allocator may request more memory from the OS.

>- When memory is freed (e.g., via free), the block is added back to the free list, and
adjacent free blocks are merged to reduce fragmentation. For instance, freeing a
block at 140 (size 10) next to 150 (size 20) merges them into [140, 30]. Linked
lists enable this dynamic resizing and merging because they allow easy insertion,
deletion, and traversal of memory blocks without requiring contiguous memory,
unlike arrays. This flexibility makes linked lists ideal for managing the
unpredictable nature of dynamic memory allocation in systems programming.

S. b) Explain how linked lists are used in dynamic memory allocation (SM)
· Correct explanation- SM

}
Time Complexity: 0(n)

if(head==NULL or head->next==NULL)
return(head);

rest=Reverselist(head->next);
head->next->next=head;
head->next=NULL;
return(r.est);

Initialize three pointers prev as NULL, curr as head, and next as NULL.

Iterate through the linked list. In a loop. do the following:

o Store the next node. next = curr -> next
o Update the next pointer of curr to prev, curr -> next= prev
c Update prev as curr and curr as next, prev = curr and curr = next

Recursive version:
Reverselist(head)
{

11

6.b) Convert the following infix expression to postfix expression(SM)
a+ b * c/(d * e + f"g) - h * k

Correct answer-SM
Partially correct answer or correct procedure-3M

Popped value is 25. top 16p

• • • • ~ v
/ ,,.,.
/
/i..--

top
2. Pop(s): Removes and returns the top element from the stacks .

•••
Pop (S): Deletes the top element of the stack

1. Push(s, x): Adds the element x at the top of the stacks .

Push (S, x): Insert element x at the top of stack S.

A

D

c
•----Top D

Unit-3
6.a) Explain the push and pop operations in a stack with an example(SM)

push defintion-lM
pop definition-lM
Example-3M

A stack is a data-structure that follows the Last In, First Out (LIFO)
principle. This means that the last element added to the stack is the first
one to be removed.

l i t!)... bC ~~ di-
\
l
i
i

t
·,

12

f~pf ~} c;sn~ apf?~YJcl

p10n (~/-r)

A ppe-1"- -to .
;;J(:,6tM ?:'.. c 7. f1lt'66I0'1

f0f{f3>) Oi~- LJf/?dncJ
.(JU6h (LJ / I)

fld3l?{f3 / r ;

i .+-­
l
' i

I

: 6-

1
f :

' J

I

13

ptJf{fl J t)Y7t:I. apf~n d
fbp(-3) A~ ,:,j?f eJ1ci

pi<.5~ {!3 / -)

I Af'ft!nJ- fo rwi-bi~ ! ~'1-~~';0VJ

p LJ.b i, (. 8 /,);--)

! FP aJ.L ~ m 'b),. };}/ c I
I ,,.,,,,. "Pr,,, -H7 rt:oJ-/,;'X I
i ezp"1~tJ6jl:7'1 · p/6t1,,11-')

I

I A I I (i abt:>1-.:f-e~

.:- I I J .
I

abc~·~!
I
i

I

! c;ppdV!~ ,~ ,.,:,.6)-b'l'X­
I &?'.~&Jjt,"7

I

\ I ?1pp~~ -fe7 ;P,o6l- bi~
c!'"'t ?1'JC" S6jcw1

J)

14

Example:
Invalid.

Pop symbol from the stack,

If popped parenthesis does not match the parenthesis being scanned

Invalid: mismatched parenthesis.
4-. After scanning all the symbols

Ir stack is empty
Valid: Balanced parenthesis.

else

else

3. 11· symbol is right parenthesis
II stack empty

Invalid.

Algorithm/Pseudo code/Explanation- 2M
Example-3M

1. ~can symbols of expression from left to right.

2. If symbol ls left parenthesis,
Pu:-.h on to the stack.

OR
7.a) How does a stack help in checking balanced parenthesis? Explain with an example.
(SM)

a.pp~~,:::{ h::, p~&;.b/'1-.
t?Zf~c76.!!Jj t:;:,1-7

GJ 4bc~~&¥~jA+/~h~
pop aU- 6cf'wtb~6

11 4Yld LJ ,ClbC..~0gr;.b'tJ A -f- J -I- i, >{)f-, _..

a.rp~"y/ .e -Jo 1c0JJ:f ,;(_ ;
;. eq~tY-310'1/l

.. p~:3tk?(. d!-x.p~;;;io~ i~---- ab;J/i-.dc3!'9.i;r{JA-1_)-l-M'r->~-

15

7.b) Construct a C/C++/Python program to implement a stack using an array (SM)
Program-SM

//Program to implement stack using array
#include<stdio.h>
#include<stdlib.h>
#define n 22
int top=-1;
void Push(int s[), int x);
int Pop(int s[]);
int Peek(int s[J);
void Display(int s[J);
void lsEmpty();
void lsFull();
int Length();
void main()
{

int s[n),x,l,ch;
while(l)

Gr iv"Y) ~c!t-tCc? o/;, pt:!11~\.f h,,<"Si6 to [t ~ c)j
--- - -

.5jwib~ Ae+iot,t Sl'-1 e: ~
5 c " l-1 \,J e J

- LJ
[PLA~1.-i cs.., t:) td
f. pt,..$1, (s / r : tH
j pop(~) \ I lJ 'f 'WlaJ..et.i~~ t-oiH, j

{ pu.&'h {S/ C) L8
) popes) ' I LJ , c • 1,V\ d J.c' 1,,d w a- i.,)

J pop(~/ , I u
' { ' wia1e1-te.::l ~; H, 'J

16

if(top==n-1)
{

}
}

}
void Push(int s[], int x)
{

case 1:
printf("Enter data:");
scanf("%d'';&x);
Push(s,x);
Display(s);
break;

case 2:
x=Pop(s);
if(x!=-1)

printf("Popped element is %d",x);
Display(s);
break;

case 3:
x=Peek(s);
if(x!=-1)

printf("Element at top is %d",x);
Display(s);
break;

case 4:
Display(s);
break;

case 5:
IsEmpty();
break;

case 6:
lsFull();
break;

case 7:
)=Length();
printf("Number of elements in stack is %d \n",I);
break;

case 8:
exit(O);

default:
printf("Enter correct choice");

printf("\nl.Push 2. Pop 3. Peek 4. Display");
printf("\nS.Is Empty 6. Is Full 7. Length 8. exit \n");
printf("Enter your choice:");
scanf("%d",&ch);
switch(ch)
{

{

17

}
void lsFull()
(

if'(top=v=n-L)
printf("Stack is full \n");

else ·
printf("Stack is not full \n");

}
void lsEmpty()
{

if(top==·l)
printf("Stack is empty \n");

else
printf("Stack is not empty \n");

inti;
printf("\nElements in stack: \n");
for(i=top;i>=O;i-·)

printf("%d \n",s[i]);

}
void Display(int s[])
{

}
x=s[top];
return(x);

printf("Stack underflow \n");
return (· 1);

}
int Peek(int s[])
{

int x;
if(top==· 1)
{

}
x=s[top);
top=top-1;
return(x);

top=top+l;
s[top]=x;

}
int Pop(int s[])
{

int x;
if(top==·l)
{

printf("Stack underflow \n");
return(-1);

}

printf("Stack overflow \n");
return;

18

8.b) Illustrate the working of a circular queue with an example. (5 M)
Explanation of enqueue and dequeue in circular queue - SM

rear
Deleted item is 22. r 11

k6ht front

2. Dequeue (Q): Delete an element from the front end of the Queue Q.

l~I I

r 1 1
front ~r rear

1. Enqueue (Q, x): Insert a new element x at the rear end of the Queue Q.

·l•l•l•I I I

Enqueue(Q, x): Insert a new element x at the I ear end of the Queue Q.

Dequeue(Q): Delete an element from the front end of the Queue Q.

Enqueue
Front Rear

3 I 4 r'
D

Dequeue

Unit-4
8.a) Explain the enqueue and dequeue operations in a queue with an example(SM)

enqueue defintion-lM
dequeue definition-lM
Example-3M

A queue is a restricted linear list in which all insertions and deletions
can be done at opposite ends, called the rear and front respectively.

A queue is a data structure that follows the First In, First Out (FIFO)
principle. This means that the first element added to the queue is the first
one to be removed.

}

}
int Length()
(

return(top+ 1);

19

Time complexity of any 5 queue operations - SM

OR
9.a) Analyze the time complexity of various queue operations in both array and linked list
implementation. (SM)

H e fl?~ J/'cJ ~

l/0 &' j r? 0 t'!-?l)-

g i VY) i) tJ'f'l}__j /
}?()~ do

2

1

n-1 0 1 2

A circular queue is a fixed-size queue where the last position
connects back to the first, allowing efficient reuse of empty spaces after
dequeues. It prevents memory wastage by wrapping around when the end
is reached, avoiding the "false overflow" issue of linear queues.
i'h) ,,cal \'tC'W of circular queue Logtc.il VH'W

20

int data;
Node *next;

} ; .
Node *front=NULL~*rear=NULL;
,. front is a pointer to the first node of the linked list.
,. rear is a pointer to the last node of the linked list.
, For enqueue operation, we add a node at the end of the linked list.
r: For dequeue operation, we delete a node at the beginning of the

linked list.

Assumptions for the functions:
typedef struct node Node;
struct node
{

Enqueue pseudo code - 3M
Dequeue pseudo code - 2M

9.b) Develop pseudo codes for enqueue, dequeue operations in a queue with linked list
implementation. (SM)

In linked list implementation, for dequeue operation, if we assume that we are maintain
tail pointer to last node. If we don't maintain tail pointer, it will be O(n)

Operation Array (Simple Queue) Linked List

Enqueue 0(1) 0(1)

Dequeue 0(1) 0(1)

Front/Peek 0(1) 0(1)

ls Empty 0(1) 0(1)

ls Full 0(1) Not applicable

21

Unit-5
10.a) Compare binary trees and binary search trees with respect to structure and
operations(SM)

}
Time Complexity: 0(l)

}
x=front->data;
tmp=front;
if(front==rear)

front=rear=NULL;
else

front=front->next;
free(tmp);
return(x);

printf("Queue is empty \n");
return(-1);

if(front==NULL)
{

f unp
int Dequeue()
{

I' II

2. Dequeue Q: Delete an element from the front end of the Queue.
ti;,11
::l-: ._I -----~ z l I I ~·!ml

} Time Complexity: l·)(I i

rear->next=tmp;
rear=tmp;

tmp=(Node*)malloc(sizeof(Node));
tmp->data = x;
tmp->next=NULL;
if(fro~t==NULL) /*If Queue is empty*/

front=tmp;
else

void Enqueue(int x)
{

'11111!

1. Enqueue (x): Insert a new element x at the rear end of the Queue.

22

2. Search Operation:
• BT:

}:> No guaranteed order -t Requires O(n) time (worst-case traversal).
• BST:

1. Structure:
• Binary Tree (BT):

}:> No ordering constraints-nodes can be arranged in any way.
}:> A node can have at most two children (left and right).

• Binary Search Tree (BST):
-;, Follows a strict ordering property:

• Left child ::; Parent
• Parent< Right child

}:> A node can have at most two children (left and right).

A binary search tree (BST) is a binary tree that has a value associated
with each of its nodes.
The values satisfy Binary Search Tree Property:

l. The values in the non-empty left subtree of a node are smaller than
the value in the node.

2. The values in the non-empty right subtree of a node are greater than
the value in the node.

Binary search tree:

Binary tree:
A binary tree is a hierarchical data structure in 'which every node has

maximum 2 children, called the left child and right child.
Exnmple:

Binary trees and binary search trees explanation- 3M
Comparison-2M

23

Importance of Hashing in Data Structures:
1. Fast Data Access - Enables 0(1) average-time lookups, insertions, and deletions

using hash tables.
2. Efficient Storage - Minimizes memory usage by mapping large data to compact

hash values.

9

key
0

h(key) = (key)mod10

10.b) Explain the concept of hashing and its importance in data structures (SM)
Concept of hashing - 4 M
Importance of hashing-lM

Hash table is a data structure in which keys are mapped to array
positions by a hash function.

In hash table, an element with key k, is stored at index h(k), where h is a
hash function.

For accessing any element, we apply the same hash function to the key and
then access the element at the address given by hash function.

The process of generating addresses from keys is called hashing.

~ if search value xis less than root value, we continue search in left subtree
>-> if search value xis greater than root value, we continue search in right

subtree
3. Insertion & Deletion:

• BT:
» No fixed rules-insertion/deletion depends on application (e.g., heaps have

their own rules).
• BST:

~ Must maintain order
• Left child $ Parent
• Parent < Right child

, r

24

11.b) Illustrate different collision resolution techniques with proper examples. (SM)
Closed hashing - 3M
Open hashing- 2M

A collision occurs when a hash function maps two different keys to
same location in a hash table. A key mapped to an already occupied table
location results in collision.

NOTE: Consider explanation of any traversal technique

cpaqbxndek[w y m x b z d

Inurdei t I wu s .. l. : lll!l, 'I II ivcrsal:

' 0 / <. 00

--__ _

0 / .
'

Example:
}

} Time Complexity: uui)

InOrder(root->lchild);
printf("%d "Jroot->data);
InOrder(root->rchild);

if(root)
{

OR
11.a) How does recursion help in tree traversal? Explain with an example (SM)

Any recursive tree traversal - 3M
Example- 2M

We use recursion to travers a binary tree. For example, inorder traversal can be done as
follows:

Ino rder traversal is a traversal method that visits nodes in the following
order.

1. Traverse the left subtree in Inorder.
2. Visit the root node.
3. Traverse the right subtree in In order.

Pseudo code:
void InOrder(Node *root)
{

3. Key Applications - Powers hash tables, databases, caches, cryptography, and
duplicate detection.

