vjo 1 8deg

"SJUQI)E)S
¥OD | TT |3uy20]q-uou pue Juryo0[q Usemdq SIRHUAISII | (']
~101e1edwon
0D | T |11q-ouo & ugisap 03 paxmbai siojexodo oy Ajnuapy | (8°1
"Zpuex
€0D | TT | ‘1 ‘0 Sutpniout aje3 YO JO SIYGR) yIng oG3 PIPald | (1
V' IAdH ‘
€00 | TT |FO[LUSA UI UOTOBIISQR JO [9AD] 3SAMO] SI Jeyp | (']
"IOMSUR JNOA AJLISA
COD | TT |PuUe ¢- pue 9+ JO uonippe Areurq oy} wuoydd | (p'1
{(q=—==e) = A uBsse ‘(q==B) = £ udIsse .
,, X0I1=9
COD | ¥T | PUe X011 =®JI ‘A pue [4 jo jndino ogy azAjeuy | (o'
«%®» PUE 9%,
10D | 7T |s10je10d0 oY) USIMIDQ QOUISIIIP oY) 2quosd(| (q'1
"Apnys 9sed B J)im
10D | 7T |urepdxe “JqH Jo[usA ul Z £q ueowr ay) ssnosiq | (B']
0D | 1d

V- 1dvd

WONNQ 28IN07) — 0D

‘2oe[d 2o U pasamsue 9q jsnuwr Jaded wonsang) yo sped [y ¢
"SYJBW ()] SaLUBD uonsand) yoryg

"JIUT YOBD WOIJ 20107 [BUISIUI UR [Im suonsanb Aessa ¢ surejuod g-ped ¢

SYIBIA]

T soLUED uonsany) yoey "suonsanb Iamsue HOYS (] SUIBIUOD Y-Med 'Z
‘g pue v sued om) surejuoo Jaded uonsanb siyT 11 :910N

[9A3] swoolg — g

0L -SHIeN "Xe]N

(ONTITANIONT NOLLVIINAWINOD % SOINOYLOITH)

"TJdH HONOYHL NDISHA WHLSAS TVLIOIA

SInOY ¢ :uoneIn(g

ST0T HAAIAAON - SuOnBUNIEXY Je[N3aYy - 19)$0W0G | - [IL'd I1I

€T dAd

VI0S¥DHET =2poD

v jo v 9deq
‘O a1 ndino pue
WS | SOD | +1 |0 mdino usamiaq 2ouaiazip ay3 urerdxy | (q
urd
1sar e yum dopg-dify @ jo Anjeuonouny
NS | SOD | #1 |y AJuoA 0} Youdq 3s9) oy udisa| (B |11
HO
WS |SOD | ¥T "weIgeIp 3}oo[q ym 1N ureldxg | (q
‘urd a[qeud
ue [im I9pPoo9p § 0} ¢ JO AN[euonouny
NS | SOD | ¥1 |9 AJuoAa 0} yousq 319} oyl dzAeuy | (B QT
A-LINN
"9[dwexa YIIm AT]
W 0T | #OD | ¥1 |peulye Ies() 10j TTQH SO[MAA a1 uSisa(| 6

d0

"SUIM
10Aerd oty uaym Ajuo Y31y ‘indino j1q-1 — um

(0
= [IBJ*] = ss200ns) ndur j1ig-1 — diy °
19831 [B1Y-9AI}OB SNOUOIYOUASY —IS1 ©
ndut 300D — N[°
:sreudis indinondur Suimorog a3 9sn

L

OR

Develop the Data flow Verilog model to
design the circuit with delay constraints. Write
stimulus block to excite the inputs shown
below. Also draw the output waveform.

#10

30

Input excitation (timescale is ns)

L4

Co2,
CO3

I0M

UNIT-1V

1.i) |Is it possible to include both level-sensitive and| L4 | CO5
edge-sensitive signals in the sensitivity list of a
single always block.
1.j) | Explain the Testing. 12 | CO5
PART-B
Max.
el Marks
UNIT-I
a) | Discuss the different complier directives in| L2 | CO1 | 5 M
Verilog HDL.
b) | Explain Module structure in Verilog HDL. | L2 | CO1l | 5 M
. OR
a) |Describe the different Data types in|L2|COl| 5M
Verilog HDL.
b) |Implement XOR gate using basic gate| L2 | COl | 5M
primitives.
UNIT-II
a) | Explain the differences between sequential | L2 | CO2 | M
and parallel blocks with a case study.
b) | Write a Verilog HDL code to implement 4 | L2 |CO2,| 5 M
bit Register. CO3
OR
a) Develop a Verilog code to implement the | 14 | CO2 | 5M
D flip flop. Name the module as D_FF.
b) | Design Verilog HDL program 4 bit binary | L4 | CO2,| 5 M
counter using behavioural modelling. COo3
UNIT-III
Implement a mux 2tol circuit using a|L4 |CO2, 10 M
conditional operator and then use the module CO3

instantiation to implement mux 4tol using
mux_2tol.

Page 20of 4

In the traditional Korean game Ddakji, a player

wins if they successfully flip the opponent's

tile three times in a row. Each successful flip

1s represented by a binary 1, and each failed

flip is represented by a binary 0.

Design a Mealy/Moore sequence detector

using Verilog HDL that detects three

consecutive successful flips in a serial input

stream.

Design Requirements:

1. The design should use a Finite State

Machine (FSM).

ii. The detector should not allow
overlapping sequences.

L4

CO4

10 M

Page3of4

Prasad V Potluri Siddhartha Institute Of Technology,Kanuru,Vijayawada-520007

Sub: DIGITAL SYSTEM DESIGN THROUH HDL BRANCH: ECE
Year: Il B.Tech Sem: I Regulation: PVP23 Code: 23EC4501A
1.a) Z meaning --------=-=====s=r=mmmmmmmommm e mm oo eeee M
Explanation --- e -—--1M
1.b) any one difference ----—--2M
l.c) vyl andy2- — ----—--2M
1.d) addition---=-===mmmmmm e e 2M
l.e) name---- ---- ---2M
1.f) OR Gate Symbol ---- ----—---1M
Table----------- - - IM
1.g) Equations-- memmmmmnm e M
Operators----=-========m=mmmmm oo M
1.h Any one difference----- ----2M
1.i) answer---- T 2M
1.j) definition------------ 2M
2.a) Types- -- - --2M
explanation---=--=-=-=-e-mcmmmmcmmnanee M
2.b) module with example e 3M
Diagram -- ---2M
3.a) Data types----- —mmmmemn IM
Net data types & example--- ---2M
Registers or variable data types - 2M
3.b) Logic Symbol and truth table ---------------- ---2M
Program(verilog code)------- -- ----3M
4.a) exaplanation of sequential --- ---2M
exaplanation of parallel-------------------- ---3M
4.b) Dff Program -2M
Register - - e 3M
5. a) Logic Symbol and Circuite diagram ---------=-------- 2M
Program --- -- - -3M

5.b) iDiagram and Truth table ----- mmmmmemnes 2M

Program ------------- LT E LT 3M

6.) 2X1 MUX- diagram ana truth table---- 2M
2x1 MUX program-------------- m———mee- -3M
4X1 MUX- diagram ana truth table-------------memememne- 2M
4x1 MUX program---=-=====mmmm oo M

7.) Program(verilog code)-=-=m=mmmmmmmmom oo 5M

Test bence---------- mmmmmmm e ----5M

8. State diagram m- e M

] T 13— 3M
Program----=--==c- e M
9. Diaram and truth tabe -- SM
Program---—--—--- e M
10.a) Logic diagram =------=-=--mmmmmmmmme e 2M
T Tu T B 2] o) L —— IM
Program(verilog code)--=---=-=cmmmmmmmmmmeee M
10.b) block diagram =-=-===---ememm e M
explanation-----===-me o M

11.a) Logic Symboland diaram=-=---=-=-=—-oomemeemeeeeeee 2M

Program(verilog code)---------------- 3M

11.b) any two differences with example program---------------- 5M

T S evn Tsema vegualy/ Boawmtmahar gevemsts —2o€ =
'D*I»."hj ‘;y&w/\ DLsaym Thverys MWD ecocl ! QLUE € use/ M

Celnme C’& \rqluut tr A = (tc

Z means High Impedance state and It means the signal is not driving anything and the output behaves like

it is disconnected or floating

-

1.a

1.b

&& means- Logical AND

Result is 1 or 0 only

& mean-s Bitwise AND

It works bit-by-bit and used on vectors / multi-bit signals
l.c

yl=(a==b)

1,2,3,bit are same Last bit: X == X — treated as don’t care
yl =1
y2=(a===b)

X===X— TRUE

y2=1

1d

+6- 0110

-3 0011

3 0011

l.e

Gatelevel modelling

B
or 0 1 x z
0 0 1 x X
1 i1 1 1
X x 1 x X
z Xx 1 x X

l.g

A 1-bit comparator compares two single-bit inputs A and B and produces three outputs:
A=B
A>B
A<B

operators

NOT (~)

AND(&)

OR(|)

Lh

Blocking assignments = equals non-blocking assignments <= is less than equals

Blocking assignments are excuted in the order they non-blocking assignments allows scheduling of
are specified in a sewuential block without blocking the execution of statements

li
NO
1]

A test bench is a Verilog program often written to test the functionality of a design for all possible input
combinations

This helps us to prevent the system from malfunctioning

2.a

All compiler directives are defined by using the <keyword> constructand two most complier directives

1.define

2.include

“define

The “define directive is used to define text macros in Verilog (see Example 3-6).
This is similar to the #define construct in C. The defined constants or text macros
are used in the Verilog code by preceding them with a * (back tick). The Verilog
compiler substitutes the text of the macro wherever it encounters a

* <macro_name>.

Example 3-6 ‘define Directive

//define a text macro that defines default word size
//Used as ‘WORD_SIZE in the code
‘*define WORD_SIZE 32

//define an alias. A $stop will be substituted wherever 'S appears
‘*define S $stop;
Z

“include

The * include directive allows you to include entire contents of a Verilog source

file in another Verilog file during compilation. This works similarly. to the #include
in the C programming language. This directive is typically used to include header
files, which typically contain global or commonly used definitions (see Example

‘include header.v

:Verilog code in file design.v>

2.b) explain Module structure in Verilog HDL

* A module is declared by the keyword “module” It must have a name (identifier) and terminal list
inputs, outputs). Every Verilog program start with a keyword module and end with a keyword
endmodule

module <module name> (<module terminal list>);
statement 1;

statement 2;

Endmodule

°* A module in Verilog consists of distinct parts

Module Name,
Port List, Port Declarations (if ports present)
Parameters(optional),

Declarations of wires, Data flow statements

regs and other variables (assign)

Instantiation of lower always and inictial blocks.

level modules All behavioral statements
go in these blocks.

Tasks and functions

endmodule statement

Figure 4-1 Components of a Verilog Module

3.a) Explain Data types in Verilog HDL
Ans) There are two main groups of data types
» Nets
» Registers or variable data types
NET:
* Nets represent physical connections between structural entities such as gates
* A Net is short form of network.
* Network is a group of devices that share a common connection
* Nets do not store values (except — trireg)

* If a net has no driver, it gets the value of z(high impedance) unless the net is a trireg, in which case it
shall hold the previously driven value and net is not a keyword

Net Data Type Functionality

wire, tri Interconnecting wire - no special resolution function.
wor, trior Wired outputs OR together
wand, triand Wired outputs AND together
tri0, tril Net pulls-down or pulls-up when not driven
supply0, supplyl Net has a constant logic 0 or logic 1 (supply strength)
trireg Retains last value, when driven by z (tristate) l
example £
= —
c L

wire a

Registers or variable data type:
* A variable is an abstraction for a storage device
* A variable can be declared through the keyword reg and stores the value of a logic level 0, 1, X, and z
* Registers retain value until another value is placed onto them

* The value stored in a reg is changed through a fresh assignment in the program

* Unlike a wire, a reg doesn’t need a driver

= Ex reg a;
ata Types Functionality
reg Unsigned variable
integer Signed variable - 32 bits
fime Unsigned integer - 64 bits
real Double precision floating point variable — 64 bits

* Aninteger is a general purpose register data type used for manipulating quantities and Integers are
declared by the keyword integer

integer counter;
counter = -1;

* The time register is a 64-bit wide data type that is used to store simulation time and to check timing
dependence

time savetime;
savetime= $time;

* Real number constants and real register data types are declared with the keyword real and They can be
specified in decimal notation (e.g., 3.14)

real a;
a=4.56;
3.b)

module xor gate(A,B,Y);

2 input XOR gate

N A B A®B
Input A,B; A ATDB o o o

B o 1 1
Output Y, ‘eXclusive OR 1 0 1

1 1 (1]

xor (Y,A,B);
endmodule
4.a)

Sequential block — delimited by begin ... end
Statements inside a sequential block execute one after the other, in the order they are written.

If you use timing delays (e.g., #5, #10, or event controls) for some statements, each delay is relative to when the
previous statement in the block completed.

For specifying a sequence of actions in known order — e.g. in testbench initialization, stimulus generation, or
certain behavioral sequences in simulation.

example

initial begin

a=0;
#5b=1;
#10c=a & b;
End

Parallel Block delimited by fork...join

All statements inside a parallel block are started simultaneously when the block is entered — they run in

parallel.

If statements have delays or event controls, each delay is measured relative to the time when the block was

entered not relative to previous statements

The order the statements are written inside the block does not determine execution order. Instead, timing

controls decide when each statement executes.

Control leaves the block only after all concurrently started statements complete (after their respective delays or

events
initial begin
fork
#5a=1;
#10b=0;
#15c=a|b;
join

end

4.b)

First define D FLIP-FLOP

module dff(d,clk,q,qb);
input d,clk;
output q,gb;

reg q,qb;
initial
begin
g=1'b0;
gb=1'b1;
end

always @ (posedge clk)
begin
q=d;
gb=~q;
; - end
endmodule

odule four bit register(A, clk, q0, ql, q2, g3);
input [0:3] A;

input clk;

output wire g0, ql, g2, g3;

» ab2, gb3;

dff df0(d0, clk, q0, gb0);
dff dfl(dl, clk, ql, gbl);
dff df2(d2, clk, q2, gb2);
dff df3(d3, clk, q3, gb3);
always @ (posedge clk)
if (cik)
begin
d0 = A[0];
dl = A[1]);
d2 = A[?];
d3 = A[3];

5.a)

input output

Inverted output

module D_FF (Q,D,CLK);
output Q;
input D,CLK;;

reg Q;
always @(posedge CLK)

Q=D;

endmodule

5.b)

rsth —

4
cO —r<— out

clk ——

Out=Count
module counter (input clk,
input rstn,
output reg[3:0] count);
always @ (posedge clk)
begin
if (! rstn)

count <= ();

nands

nandz

(OR) module D_FF (Q,D,CLK);

input CLK,RST,D;
output Q;
reg Q;

always@ (posedge CLK or posedge RST)
if (RST) Q<=0;
else Q<=D;

| endmodule
[CK | 03 02 01 00
T 0 0 0 0
T 0 0 0 1
i3 0 0 1 0
i 0 0 1 1
1T 0 1 0 0
il 0 1 0 1
T 0 1 1 0
i 0 1 1 1
i3 1 0 0 0
* 1 0 0 1
1 1 0 1 0
T 1 0 1 1
I 1 1 0 0
i 1 1 0 1
T 1 1 1 0
T 1 1 1 1
¥ 0 0 0 0

" else
count <= count + 1;
end

endmodule

2:1 Multiplexer

Input Qutput

¥=50.10+S50.71

module MUX 2x1(S,Y,I0,11);
input S,10,11;

output Y;

assign Y =S8?11 : 10

4x1 Multiplexer

fl - 4-t0-1
12— Mux

t1

sl s0

——- Out

1]

S0

sel Y
0 i
1 i
sl s0 out
0 0 10
0 1 11
1 0 12
1 1 13

4x1 multiplexer using instantiation

module mux2x1(s,y,io,il);
input s,i0,il;

output Y;

wire y1,y2;

not (so,so’);

and (y1, so ,i0);

and (y2,s0,i1);

or (y,yl,y2);

module mux4x2(y,i0,i1,i2,i3,s1,s0);
input i0,i1,i2,i3,s1,s0;

output y;
wire mux1, mux2;

mux2x] mux 1(muxl1,i0,il,s1);
mux2x] mux 2(mux2,i2,i3,s1);
mux2x] mux 3(y,muxl,mux2,s0);

endmodule

7)
module circuit_df (A, B, C, OUT);
input A, B, C;
output OUT;

wire X, Y;

assign #10 X = A |B; // OR with 10 ns delay
assign#5 Y =X & C; // AND with 5 ns delay

assign #5 OUT =Y | C; // OR with 5 ns delay

endmodule

2x1
mux

i2 —

i3 —

2x1
mux

2x1
mux

sO

out

"TEST BENCH
module tb;
reg A, B, C;
wire OUT;
circuit_df uut (A, B, C, OUT);
initial begin
// Initial inputs (0 ns)

A=0;B=0;C=1;

// At 10 ns

#10C=0;B=1;

// At 20 ns

#10A=1;C=1;
/1 At 30 ns

#l0A=0;B=0;C=1;
#20 $finish;
end
initial begin
$dumpfile("wave.ved");
$dumpvars(0, tb);
end
endmodule
8.
Input:
o = successful flip
e (= failed flip

e FSM Design (Moore Machine)

State Meaning
S0 no successes yet (start)
S1 1 consecutive success (1)
S2 2 consecutive successes (11)

S3 3 consecutive successes detected (111 — output=1)

module seql11_detector(
input clk,
input reset,
input din,
output reg out
);
/I Encoding states
typedef enum reg [1:0] {
S0 =2b00, //no 1s yet
S1=2b01, /1
S2=2b10, //11
S3=2b11 //111 detected (output = 1)
} state t;
state_t current, next;
/I STATE REGISTER
always @(posedge clk or posedge reset) begin
if (reset)
current <= S0;
else
current <= next;
end
// NEXT STATE LOGIC
always @(*) begin
case (current)
S0: next = (din ? S1 : S0);
S1: next = (din ? S2 : S0);
S2: next = (din ? S3 : S0);
S3: next = SO; // NON-OVERLAPPING reset

endcase

end
// OUTPUT LOGIC (Moore: depends only on state)
always @(*) begin
out = (current == S3);
end

endmodule

mealay Machine
module seq111_mealy (
input clk,
input reset,
input din,
output reg out
);
// Mealy state encoding
typedef enum reg [1:0] {
S0=2b00, //nolsyet
S1=2b01, /1
S2=2b10 /11
} state t;
state t current, next;
// STATE REGISTER
always @(posedge clk or posedge reset) begin
if (reset)
current <= S0;
else
current <= next;
end
always @(*) begin

out=0; //default

case (current)
S0: begin
if (din) next = S1;
else next = S0;
end
S1: begin
if (din) next= S2;

else next = SO;

next = S0; // non-overlapping

out =1; //third consecutive 1

end

S2: begin
if (din) begin
end
else begin

next = S0;

end

end

9.
primitive udp_and(a,b,out);
input a,b;

output out;table

£

0/0

sune | FrESENt | (Presen '_\.ex" Output
State tinput) State
Q1 | Qo X Q1+ QO+ 7z
0 0 (1] 0 0 0
S0
(¢] 0 1 0 [¢]
0 0 o0 [
1 (4]
0 0 1)
1 1 1

endtable //end state table definition

Note: Consider Any Combinational circuit UDP

endprimitive //end of udp_and definition

10.a)

module tb_decoder;
reg a,b,c.en;

wire [3:0]y;

decoder24 uut(.en(en),.a(a),.b(b),.c(c),.¥(¥));
initial

begin

$monitor("en=%b a=%b b=%b y=%b"en,a,b,y);

en=1;a=0;b=0; c=0#5

en=1;a=0;b=0; c=1#5

en=1;a=0;b=1; c=0 #5

en=1;a=0;b=1; c=1 #5

en=1;a=1;b=0; c=0 #5

en=1;a=1;b=0; c=1#5

en=1;a=1;b=1; ¢=0 #5

en=1;a=1;b=1; c=1 #5

$finish;

end

endmodule

Inputs

E A B c Yy Ye ¥s
0 X X X 0 0 0
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 0 0 0
1 1 0 1 0 0 1
1 1 1 0 0 1 0

Outputs
Y Y
0 0
0 0
0 0
0 0
0 1
1 0
0 (4]
0 0
0 0

&

=

5

b
-
-

=

=

i

PYPHIHET

a—— A —

B {>°-—E

c {>oc

Figure 5 - 3 to 8 Docoder

Y2 Y1 Yo
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 o

10.b)

Test

«uny

scorcbonecd

ngreaat

transactips Bencerator

e he,
R ¥ TR R RS

P T A D e
m llnnsaﬂlun

dAriver

P INEICI T TeTS e gt e e
e g, S AR S N SNV Pt o e Tl S S04

interface !

DUT

* Transaction
The transaction is a packet that is driven to the DUT or monitored by the monitor as a pin-level activity.
In simple terms, the transaction is a class that holds a structure that is used to communicate with DUT.

* Generator
The generator creates or generates randomized transactions or stimuli and passes them to the driver.

* Driver

The driver interacts with DUT. It receives randomized transactions from the generator and drives them
to the driven as a pin level activity.

* Monitor

The monitor observes pin-level activity on the connected interface at the input and output of the design.
This pin-level activity is converted into a transaction packet and sent to the scoreboard for checking
purposes

Agent

* Anagent is a container that holds the generator, driver, and monitor. This is helpful to have a structured
hierarchy based on the protocol or interface requirement.

Scoreboard

* The scoreboard receives the transaction packet from the monitor and compares it with the reference
model. The reference module is written based on design specification understanding and design
behavior.

Test

The top-level test class that controls the simulation.
Creates and configures the entire environment (env).
Starts stimulus sequences, controls test flow, and collects results.
DUT (Design Under Test)
The RTL block being verified.
The DUT interacts with the interface, which is controlled by the driver and observed by the monitor.
Environment (env)
The main container that holds all major verification components:
* Agents
* Scoreboard

* Coverage collectors

11.a)
module tb_dff;

input sutput
reg clk; :
reg reset; CLK Inverted sutput
reg d;
wire q;

dff async uut (
.clk(clk),
reset(reset),
d(d),

()]

initial begin

clk=0;

forever #5 clk = ~clk;

randy

end : nandz

initial begin

reset = 1;
d=0;
#10 reset = 0;

/I Apply some test values

#10d=1;
#10d =0;
#10d=1;
#20 $finish;
End
Endmodule
11.b)
output Q;

Here, Q is not Register data type and just act as wire
it canot store the values
Example

assign Q =D & clk;

utput reg Q;

Q is an output port and Qs a reg type, meaning it can store a value and be assigned inside an
always block.

Example
output reg Q;
always @(posedge clk) begin
Q<=D;

end

