

Code: 23EC4501A

III B.Tech - I Semester - Regular Examinations - NOVEMBER 2025**DIGITAL SYSTEM DESIGN THROUGH HDL
(ELECTRONICS & COMMUNICATION ENGINEERING)****Duration: 3 hours****Max. Marks: 70**

Note: 1. This question paper contains two Parts A and B.
 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
 4. All parts of Question paper must be answered in one place.

BL – Blooms Level**CO – Course Outcome****PART – A**

		BL	CO
1.a)	Discuss the mean by Z in Verilog HDL, explain with a case study.	L2	CO1
1.b)	Describe the difference between the operators “&&” and “&”.	L2	CO1
1.c)	Analyze the output of y1 and y2, if a = 110X and b = 110X assign y1 = (a ==b); assign y2 = (a==b);	L4	CO2
1.d)	Perform the binary addition of +6 and -3 and verify your answer.	L2	CO2
1.e)	What is lowest level of abstraction in Verilog HDL?	L2	CO3
1.f)	Predict the truth tables of OR gate including 0, 1, X and Z.	L2	CO3
1.g)	Identify the operators required to design a one-bit comparator.	L2	CO4
1.h)	Differentiate between blocking and non-blocking statements.	L2	CO4

1.i)	Is it possible to include both level-sensitive and edge-sensitive signals in the sensitivity list of a single always block.	L4	CO5
1.j)	Explain the Testing.	L2	CO5

PART – B

			BL	CO	Max. Marks
--	--	--	----	----	------------

UNIT-I

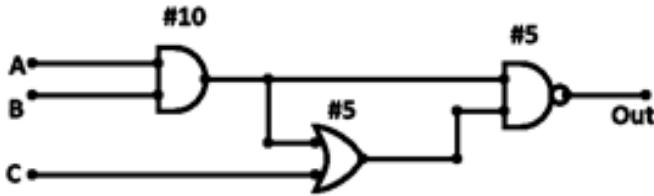
2	a)	Discuss the different complier directives in Verilog HDL.	L2	CO1	5 M
	b)	Explain Module structure in Verilog HDL.	L2	CO1	5 M

OR

3	a)	Describe the different Data types in Verilog HDL.	L2	CO1	5 M
	b)	Implement XOR gate using basic gate primitives.	L2	CO1	5 M

UNIT-II

4	a)	Explain the differences between sequential and parallel blocks with a case study.	L2	CO2	5 M
	b)	Write a Verilog HDL code to implement 4 bit Register.	L2	CO2, CO3	5 M


OR

5	a)	Develop a Verilog code to implement the D flip flop. Name the module as D_FF.	L4	CO2	5 M
	b)	Design Verilog HDL program 4 bit binary counter using behavioural modelling.	L4	CO2, CO3	5 M

UNIT-III

6	Implement a mux_2to1 circuit using a conditional operator and then use the module instantiation to implement mux_4to1 using mux_2to1.	L4	CO2, CO3	10 M

OR

7	<p>Develop the Data flow Verilog model to design the circuit with delay constraints. Write stimulus block to excite the inputs shown below. Also draw the output waveform.</p> <p style="text-align: center;">circuit</p> <p>Input excitation (timescale is ns)</p> <p>A</p> <p>B</p> <p>C</p> <p>20</p> <p>30</p> <p>10 20</p>	L4	CO2, CO3	10 M
---	--	----	-------------	------

UNIT-IV

8	<p>In the traditional Korean game <i>Ddakji</i>, a player wins if they successfully flip the opponent's tile three times in a row. Each successful flip is represented by a binary 1, and each failed flip is represented by a binary 0.</p> <p>Design a Mealy/Moore sequence detector using Verilog HDL that detects three consecutive successful flips in a serial input stream.</p> <p>Design Requirements:</p> <ol style="list-style-type: none"> i. The design should use a Finite State Machine (FSM). ii. The detector should not allow overlapping sequences. 	L4	CO4	10 M
---	--	----	-----	------

	<p>iii. Use the following input/output signals:</p> <ul style="list-style-type: none"> ◦ clk – Clock input ◦ rst – Asynchronous active-high reset ◦ flip – 1-bit input (success = 1, fail = 0) <p>win – 1-bit output, high only when the player wins.</p>		
--	--	--	--

OR

9	Design the Verilog HDL for User Defined Primitive with example.	L4	CO4	10 M
---	---	----	-----	------

UNIT-V

10	a)	Analyze the test bench to verify the functionality of 3 to 8 decoder with an enable pin.	L4	CO5	5 M
	b)	Explain DUT with block diagram.	L4	CO5	5 M

OR

11	a)	Design the test bench to verify the functionality of D Flip-flop with a reset pin.	L4	CO5	5 M
	b)	Explain the difference between output Q; and output reg Q;	L4	CO5	5 M