

Code: 23EC3501

**III B.Tech - I Semester - Regular Examinations - NOVEMBER 2025****ANALOG AND DIGITAL IC APPLICATIONS  
(ELECTRONICS & COMMUNICATION ENGINEERING)****Duration: 3 hours****Max. Marks: 70**


---

Note: 1. This question paper contains two Parts A and B.  
 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.  
 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.  
 4. All parts of Question paper must be answered in one place.

**BL – Blooms Level****CO – Course Outcome****PART – A**

|      |                                                              | <b>BL</b> | <b>CO</b> |
|------|--------------------------------------------------------------|-----------|-----------|
| 1.a) | Define ideal op-amp.                                         | L2        | CO1       |
| 1.b) | List two applications of op-amp.                             | L2        | CO1       |
| 1.c) | Define CMRR of op-amp.                                       | L2        | CO5       |
| 1.d) | Write two advantages of active filters over passive filters. | L2        | CO1       |
| 1.e) | Write the different types of ADC and DAC.                    | L2        | CO3       |
| 1.f) | Write the function of IC555 in monostable mode.              | L2        | CO2       |
| 1.g) | Define multiplexer.                                          | L2        | CO4       |
| 1.h) | Give one application of a Schmitt Trigger.                   | L2        | CO5       |
| 1.i) | Write the difference between Static and Dynamic RAM.         | L2        | CO4       |
| 1.j) | Write the purpose of EPROM.                                  | L2        | CO4       |

## PART – B

|  |  |  | BL | CO | Max. Marks |
|--|--|--|----|----|------------|
|--|--|--|----|----|------------|

### UNIT-I

|   |    |                                                                        |    |     |     |
|---|----|------------------------------------------------------------------------|----|-----|-----|
| 2 | a) | List in detail the DC & AC characteristics of Op-Amp.                  | L2 | CO5 | 4 M |
|   | b) | Analyze the subtractor amplifier and derive the expression for output. | L4 | CO5 | 6 M |

### OR

|   |    |                                                                                                                                                          |    |     |     |
|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|
| 3 | a) | Design an Op-Amp circuit to produce an output voltage that is proportional to the derivative of the input voltage with neat circuit and output diagrams. | L3 | CO5 | 5 M |
|   | b) | Design a comparator circuit using an Op-Amp. Explain how the output changes for an input signal.                                                         | L3 | CO5 | 5 M |

### UNIT-II

|   |    |                                                                                     |    |     |     |
|---|----|-------------------------------------------------------------------------------------|----|-----|-----|
| 4 | a) | Design first order High Pass Filter for cutoff frequency of 10 KHz.                 | L3 | CO5 | 5 M |
|   | b) | Design the Square Wave Generator for frequency of 10KHz by assuming necessary data. | L3 | CO5 | 5 M |

### OR

|   |    |                                                                                  |    |     |     |
|---|----|----------------------------------------------------------------------------------|----|-----|-----|
| 5 | a) | Design first order Low Pass Filter for cutoff frequency of 1 KHz.                | L3 | CO2 | 5 M |
|   | b) | Design a monostable multivibrator using IC 555 to generate a pulse width of 2 ms | L3 | CO2 | 5 M |

|  |  |                                                                                                                                                                             |  |  |  |
|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|  |  | when triggered by an external input. Assume a supply voltage of 5 V and choose suitable values of resistor and capacitor. Draw the circuit diagram and explain the working. |  |  |  |
|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|

### **UNIT-III**

|   |    |                                                                                        |    |     |     |
|---|----|----------------------------------------------------------------------------------------|----|-----|-----|
| 6 | a) | Demonstrate the operation of Counter Type ADC with circuit diagram.                    | L3 | CO3 | 5 M |
|   | b) | Design and explain the operation of a Dual Slope ADC for converting Analog to Digital. | L3 | CO3 | 5 M |

### **OR**

|   |    |                                                                          |    |     |     |
|---|----|--------------------------------------------------------------------------|----|-----|-----|
| 7 | a) | Demonstrate the operation of Weighted Resistor DAC with circuit diagram. | L3 | CO3 | 6 M |
|   | b) | Discuss the key specifications of DAC and ADC.                           | L2 | CO3 | 4 M |

### **UNIT-IV**

|   |    |                                                                                   |    |     |     |
|---|----|-----------------------------------------------------------------------------------|----|-----|-----|
| 8 | a) | Demonstrate the logic symbol and function table of comparator IC 7485.            | L3 | CO4 | 5 M |
|   | b) | Explain the operation of the BCD-to-7-segment code converter with function table. | L2 | CO4 | 5 M |

### **OR**

|   |    |                                                                                                        |    |     |     |
|---|----|--------------------------------------------------------------------------------------------------------|----|-----|-----|
| 9 | a) | Realize 32:1 Multiplexer using 74151 ICs.                                                              | L3 | CO4 | 5 M |
|   | b) | Design a circuit to perform 8-bit binary addition using two 4 bit adder IC 7483s connected in cascade. | L3 | CO4 | 5 M |

## **UNIT-V**

|    |    |                                                                                                                       |    |     |     |
|----|----|-----------------------------------------------------------------------------------------------------------------------|----|-----|-----|
| 10 | a) | Discuss in detail about the differences between a latches and a flip-flops.                                           | L2 | CO4 | 4 M |
|    | b) | Explain the architecture of Random Access Memory (RAM). Highlight the differences between Static RAM and Dynamic RAM. | L2 | CO4 | 6 M |

## **OR**

|    |    |                                                                                                                    |    |     |     |
|----|----|--------------------------------------------------------------------------------------------------------------------|----|-----|-----|
| 11 | a) | Discuss the Principle of operation of ROM.                                                                         | L2 | CO1 | 5 M |
|    | b) | Design and explain the working of a decade counter using IC 7490. Draw its internal block diagram and truth table. | L3 | CO1 | 5 M |