Code: 23HS1403

II B.Tech - II Semester – Regular Examinations – MAY 2025 OPTIMIZATION TECHNIQUES

(Common for IT, AIML, DS)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART – A

		BL	CO
1.a)	Define slack variable and surplus variables.	L2	CO1
1.b)	What are the merits of operations Research?	L2	CO1
1.c)	Discuss about degeneracy in Transportation problem.	L2	CO1
1.d)	How to convert maximization assignment problem into minimization problem.	L2	CO1
1.e)	Write a note on types of sequencing problems?	L2	CO1
1.f)	Discuss general guidelines need to follow while drawing project network diagrams.	L2	CO1
1.g)	Explain different types of inventory models.	L2	CO1
1.h)	Explain cost management in Break-even-Analysis.	L2	CO1
1.i)	Define saddle point and value of the game.	L2	CO1
1.j)	What is the role of theory of games in scientific decision making?	L2	CO1

PART - B

		BL	СО	Max. Marks
	UNIT-I			
2	Solve the following LPP using graphical method			
	Maximize $z = 20x_1 + 10x_2$ subject to	L3	CO2	10 M
	$2x_1 + 3x_2 \ge 30$, $3x_1 + 2x_2 \le 24$, $x_1 + x_2 \ge 3$ and $x_1, x_2 \ge 0$			

				OR	<u> </u>				
3 Use simplex method to solve the following LPP									
	Maximize $z = 3x_1 + 5x_2 + 4x_3$ subject to						L3	CO2	10 M
	$2x_1 + 3x_2 \le 8$, $2x_2 + 5x_3 \le 10$, $3x_1 + 2x_2 + 4x_3 \le 15$ and $x_1, x_2, x_3 \ge 0$								
		<u> </u>		UNIT	'-II				
4	Determine	an op	timal s	olution	to the	following			
	Transporta	tion pro	blem.						
		D_1	D_2	D_3	D_4	Supply			
	O_1	1	2	1	4	30	L3	CO2	10 M
	O_2	3	3	2	1	30			
	O_3	4	2	5	9	20			
	Demand	20	40	30	10				
				OR					
5	A market	manag	er has 3	5 salesn	nen and	there are			
	5 sales di	stricts.	Consider	ing the	capabili	ties of the			
				•	-	estimates			
					,	sales per			
	•		•	•		n in each			
	district wo		*		Saicsilia	ii iii cacii			
	district we	_	32 38 4		Го		L3	CO2	10 M
			40 24 2	28 21 3	6		LJ	CO2	10 101
		4	41 27 3	3 30 3	7				
		2	22 38 4	1 36 3					
			29 33 4						
	Find the a				_	ll result in			
	the maxim	_							
				UNIT	-III				
6	There are seven jobs each of which has to go through								_
	the machines M_1, M_2 in the order of M_1, M_2 . Processing					Processing			
	time (in hours) is given as								
	Job		1 2	3 4	5 6	7	L3	CO3	10 M
	Mach	nine M_1	3 12	15 6	10 11	9			
	Mack	nine M_2	8 10	10 6	12 1	3			
	Determine	the se	equence	of thes	se jobs	that will			

times of machines	•								
OR									
Activity Mo		st likely	Most				10 M		
Optin		time	pessimistic						
tin	ne	4 ~	time						
$\frac{(1-2)}{(1-2)}$		1.5	5						
(2-3) 1		2	3						
(2-4) 1		3	5						
(3-5) 3		4	5						
(4-5) 2		3	4	T	3	CO3			
(4-6) 3		5	7	L3	ادر				
(5-7) 4	-	5	6						
(6-7) 6	,)	7	8						
(7-8) 2	,	4	6						
(7-9) 5		6	8						
(8-10) 1	(8-10) 1 2 3 (9-10) 3 5 7		3						
(9-10) 3									
Construct a PERT	Network.	Also find	the critical pa	ıth					
and variance for ea									
	,								
8 The following tabl	e gives the	annual d	emand and un	nit					
price of the item.									
Item			A				10 M		
Annual dem	and (units)		400	_	4	CO 4			
Unit Price (F	Rs)		8.00		_4	CO4			
Order cost is Rs5		nd holdin	g cost is 10%	of					
1 1	-		•						
	unit price. Determine (i) EOQ. (ii) Total Inventory cost. (iii) Number of orders in a year.								
9 If sales are 10,000	9 If sales are 10,000 units and selling price is Rs. 20 per								
	unit, variable cost is Rs.10 per unit and fixed cost is								
	Rs.80,000/ Find out BEP in units and sales revenue.								
What is the profit earned? What should be the sales						CO4	10 M		
_	for earning profit of Rs.60,000/-?								

		UNI	T-V				
10	Using the graphical method, Solve the following game and the value of the game.						
	Player A	Player B	-2		L4	CO5	10 M
		0	 R				
11	A Glass factory specializing in crystal is developing a substantial backlog and the firm's management is considering three courses of action: (A) arrange for sub-contracting (B) overtime (C) construct new facilities. The correct choice depends largely upon future demand which may be low, medium or high. By consensus, management ranks the respective probabilities as 0.10, 0.50 and 0.40. A cost analysis reveals the effect upon the profits that is shown in the table below. Profit (Rs. Courses of action (over (construct time) facilities)				L4	CO5	10 M
	(p=0.50) High	50	100	200			
	(p=0.40)						
		sion is in the form the most prefer xpected value.					