Code: 23CS3401, 23IT3401

II B.Tech - II Semester - Regular Examinations - MAY 2025

OPERATING SYSTEMS

(Common for CSE, IT)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	Explain the role of system calls in an operating	L2	CO1
	system.		
1.b)	Differentiate between Free and Open-Source	L2	CO1
	Operating Systems.		
1.c)	Explain the purpose of process scheduling in an	L2	CO1
	operating system.		
1.d)	Describe the role of multithreading in improving	L2	CO1
	system performance.		
1.e)	Explain the critical section problem with an	L2	CO1
	example.		
1.f)	Explain how Peterson's solution helps in solving	L2	CO1
	the critical section problem.		
1.g)	Describe how virtual memory helps in efficient	L2	CO1
	memory utilization.		
1.h)	Differentiate between paging and segmentation.	L2	CO1

1.i)	Describe the role of directory structures in file	L2	CO1
	management.		
1.j)	Explain different file access methods with	L2	CO1
	examples.		

PART - B

			BL	СО	Max. Marks	
	UNIT-I					
2	a)	Describe various operating system services with examples.	L2	CO1	6 M	
	b)	Demonstrate the role of system programs in OS functionality.	L3	CO1	4 M	
	l	OR			<u> </u>	
3	a)	Compare different computing environments and their impact on OS design.	L2	CO1	5 M	
	b)	Examine the significance of system calls in process management.	L4	CO1	5 M	
	UNIT-II					
4	a)	Explain different states of a process with a process state diagram.	L2	CO1	5 M	
	b)	What is Round Robin Scheduling?	L3	CO2	5 M	
		Illustrate with an example. Can it be				
		useful for a single user system? If yes,				
		then explain. If no, then why not?				
	OR					

5	a)	Compare preemptive and non-preemptive	L2	CO1	5 M
		scheduling with examples.			
	b)	Compare multiple processor scheduling	L4	CO4	5 M
		techniques and their impact on			
		performance.			
		UNIT-III			
6	a)	How semaphores can be used to deal with	L3	CO2	5 M
		n-process critical section problem?			
		Explain.			
	b)	Explain Banker's deadlock-avoidance	L2	CO3	5 M
		algorithm with an illustration.			
		OR			
7	a)	Explain Deadlock Detection scheme for	L3	CO3	5 M
		Several Instances of a resource Type.			
	b)	What is semaphore? Why it is important?	L2	CO1	5 M
		Suggest the solution for bounded buffer			
		problem with semaphores.			
		UNIT-IV			
8	a)	Consider the following reference string	L3	CO3	5 M
		7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1.			
		Assume there are three frames. Apply			
		LRU replacement algorithm to the			
		reference string above and find out how			
		many page faults are produced. Illustrate			
		the LRU page replacement algorithm in			
		detail and also two feasible			
		implementations of the LRU algorithm.			
		r			

	1 \	XX 71	T 0	001	<i>7.</i>) <i>1</i>	
	b)	What are the disadvantages of single	L2	CO1	5 M	
		contiguous memory allocation? Explain.				
	OR					
9	a)	Consider a disk queue with following	L3	CO3	5 M	
		requests for I/O to blocks on cylinders				
		30,70,115,130,110,80,20,25(Assume disk				
		head is at 90) Draw FCFS and SSTF				
		scheduling and also determine how many				
		times the disk head changes its direction				
		for each of the above mentioned				
		scheduling techniques.				
	b)	What is virtual memory? Discuss the	L2	CO1	5 M	
		benefits of virtual memory techniques.				
		UNIT-V	r			
10	a)	Explain different File Attributes and File	L2	CO1	5 M	
		Operations.				
	b)	Explain the three allocation methods in	L3	CO4	5 M	
		file system implementation. Illustrate				
		with proper diagram.				
	OR					
11	a)	Explain the concept of file sharing. What	L2	CO4	5 M	
		are the criteria to be followed in systems				
		which implement file sharing?				
	b)	Explain about domains of protection.	L2	CO1	5 M	