UNIT-V

10| a) | Obtain the state space representation of
an n™ order differential equation.

L3

Co2| 5M

b) | A second order linear system is described
by

X1 =-2Xx;+4x;+u

X2 =-X1—2X2+u

and y=X; +X>.

|| Find the transfer function.

L3

Co2| 5M

| OR

11| The state variable formulation of a system is
given by

[x] = [:‘:’ z] [x] + m uandy=[1 0] [x].

Find the following:
a) State transition matrix and

b) State equation for a unit step input under
{ zero initial condition.

L4

cosTm M
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Note: 1. This question paper contains two Parts A and B.
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4. All parts of Question paper must be answered in one place.
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PART - A
BL. | 1CO
1.a) | Differentiate open loop and closed loop control 12 | cor
systems.
1.b) | What are the effects of feedback on Sensitivity? | L3 | CO2
1.c) | Define peak time and peak overshoot. L3 | CO3
1.d) | What is Steady state error? L4 | CO4
l.e) lef.el"entlate absolute stability and marginal L4 | cos
stability.
1.f) | What is PD controller? L3 | CO2
1.g) | State the Nyquist criterion. L4 | CO4
1.h) |Draw the circuit diagram of a lag compensator
. ; L3 | CO3
and write its transfer function.
1.1) What_ are the advantages of state variable L3 | ¢ 021
techniques?
1.7) | What is Kalman's test of controllability? L4 | COS5

Pagelof4



PART -B

BL

CO

Max.
Marks

b) | Explain steady state errors and error
constants.

L4

CO4

5M

UNIT-I

UNIT-III

Derive the Transfer function of Armature
controlled DC servo motor.

L3

CO2

10 M

a) | Explain Routh's stability criterion.

L3

CO3

5M

OR

Develop the differential equations governing
the mechanical system as shown in below
figure. Also find the transfer function
Xi(s)/E(s)

L4

CO4

10 M

b) | Write a short notes on
(1) proportional (P)
(i1) Proportional Integral (PI) controllers

L3

CcO2

SM

OR

Sketch the root locus plot of a unity feedback
system with an open loop transfer function

G(s) = Determine the range of K

S -
s(s+D(s+2)°
for stability.

L3

CO2

10 M

UNIT-IV

UNIT-1I

A unity feedback system has a forward path

8
transfer function G(S)=m. Find the

value of damping ratio, undamped natural
frequency of the system, percentage over
shoot, peak time and settling time.

L3

COo3

10M

Sketch the Bode plot and determine the Gain
margin and phase margin. For the open loop

on G(s)= -
transfer function s(1+0.35)(1+0.15) *

L4

CO4

10M

OR

a) | Describe the procedure for developing
the polar plot.

L4

CO4

5M

OR

a) |[Derive any two time domain
specifications of second order system
with unit step input.

L3

CO3

5SM

b) | A unity feedback control system has an

open loop transfer function given by
10

G(s)H(s) = m . Draw Nyquist

diagram and determine stability.

L4

CO4

5M
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Scheme of Valuation
Part-A
I a) compare any two differences of open loop and closed loop - 2m

I b) Sensitivity of open loop or closed loop —2 m
l¢) Peak time definition or expression -1m
Peak overshoot definition or expression- Im
1 d) Steady state error definition or expression -2m
1 e) Absolute stability and marginal stability —2m.
1 ) Basic concept of PD controller — 2m
| g) Statement of Nyquist criteria — 2m
I h) Lag circuit diagram — 1m
Transfer function — Im
1 1) Any two advantages of state variable techniques — 2m
1 j) Definition of controllability of condition for controllability — 2m
Part-B
2. Formulation of equations-4m
Simplification — 4m
T.F derivation — 2m
3. Formulation of Differential equations — 4m
Applying Laplace transforms and Simplifacation — 4m
Finding T.F —2m
4. Characteristic equation or closed loop formulation — 2m
Finding damping ratio -1m
Undamped natural frequency — Im
Peak time calculation — 2m
Peak overshoot calculation — 2m
Settling time (2% or 5%) — 2m
5. a) Derivation of any two time domain specifications — 5m

b) Explanation of steady state error and error constants — 5m



6 a) Explanation of Routh stability criterion — 5m
b) Explanation of P & PI controllers — 5m
7. Formulation of all construction rules and calculation — 7m
Sketch of root locus plot -~ 3m
8. Magnitude calculation and plot — 4m
Phase angle calculation and plot — 4m
GM & PM from Graph —2m
9. a) Explaining the procedure of polar plot — 5Sm
b) Nyquist plot and calculation 4&1
Comment on Stability — 'm
10 a) Formulation of state model — 5m
b) Finding transfer function for the given state model — 5m
11 a) Finding state transition matrix — 5Sm

b) State equation calculation — 5m



Part-A

1 a) Differentiate open loop and closed loop control systems

Open loop system -~ Closed loop system
. In accurate and un reliable ﬂAu::m ate and reliable

Sll‘i‘lplc and economical C omplcx “and costlier

The changus in oulput duec to | The changes in oulpul due to
_ . | external disturbances arc

external  disturbance are  nof ... .ioq

corrected - o

Stable system Unstable system

1 b) What the effects of feedback on sensitivity?
Sensitivity of the overall gain of negative feedback closed loop control system (T) to the

variation in open loop gain (G) is defined as
ar

§T — 1 _ Percentage change in T
¢ = @ —
a

Percentage change in G

Sensitivity of open loop system is
Sensitivity of closed loop system Sg =1 is
S ﬂmm_%_,ﬁ,_
T {1+ GH)
It mean (Sé )Mm < (Sé)mm

Hence closed loop system is lesser sensitive to parameter variations; therefore closed

loop system is better.

1 ¢) Detine Peak time and peak overshoot

— Time required for the response to reach the peak value of ti
response

T 1
%mw 2
g wy/(1-0%)
— It is the normalised difference between the peak value of time
response and the steady state value

ilea
M, = 100e V(1479




1d) What is steady state error?
The steady state error is defined as the value of error as time tends to infinity.
(or)

It is the error between actual output and desired output as time tends to infinity

¥ " (Or) !
e = lim e(t) = lim (r(t) - y(t)) i o SR(s)
t=o0 {0 €os = !i{% SE(S) = Ll-{%l T G(S)

1 ¢) Differentiate absolute stability and marginal stability

® [fall the roots of the characteristic equation have negative real parts, then the impulse response is

bounded and eventually decreases to zero, Therefore, éuf g (1)|dr is finite and the system is BIBO
stable. Also called Absolute stability

® If one or more non-repeated roots of the characteristic equation are on the imaginary axis, then
g(t) is bounded, However, if the input signal have a common pole on the imaginary axis then the
output c(t) becomes unbounded. In absence of any common pole the output is bounded and has
sustained oscillations. These kind of systems are called ‘marginally stable’,

1 f) What is PD controller?
PD controller is a proportional plus derivative controller which produces an output signal
consisting of two - one proportional to error signal and other proportional to the derivative of the

signal.

1 g) State the Nyquist criterion.

If the Nyquist plot of the open loop transfer function G(s) corresponding to the Nyquist contour
in the S-plane encircles the critical point —1+j0 in the counter clockwise direction as many times
as the number of right half S-plane poles of G(s), then closed loop system is stable.

1 h) Draw the circuit diagram of a lag compensator and write its transfer function

[
W] )
4 A . o
Y’J = F ) T s oY . T4
\z\rg i - -

- i i) Tes+]

1 1) What are the advantages of state variable techniques?
It can be applied to non-lincar as well as time varying systems. Any type of input can be
considered for designing the system. It can be conveniently applied to multiple input multiple

-

e



output systems. The state variables selected need not necessarily be the physical quantities of the

system

1 j) What is kalman’s test of controllability?
A system is said to be completely state controllable if it is possible to transfer the system state
from any initial state X(ty) at any other desired state X(t), in specified finite time by a control
vector U(t).
(or)
1s completely state controllable 1if only if the rank of combined

matrix

0. = BB, ...dB]

1s 7 {order of the sysiem).

Pari-B
2. Derive the Transfer function of armature controlled DC Servo motor
Ra L

» Variables and Constants in the model;
o E'“"gm@mﬂfammm@} K7:Motor torgue constant
~ Lq =inductance of armature (H) K, Back emf constant
~ 1o =armature current (4)
— Iy =field current (4)
~ E, =voltage appliedto armature (V)
~ E =backemf (V)
~ Ty =torque developed by mator (Nm)
— 0 =angular displaceof motorshaft (rad)
— ] = moment of inertia of mator and load refierred to motor shaft (kg —m?)
~ D = friction coefficient of motor and load referred to motor shaft (;gﬁ;)



Step 1: Torque (Electrical )

Flux is developed due to the field current. This flux s
proportional to field current, assuming linear range of
magnetization curve,

pai, . =k, (1)

Torque (T,,-) is proportional to the product of armature current

and air gap flux.

heya ig L Ty =g (2)
Replacing eq.(1) in eq.(2), we get,
Lo = Kkdd, 5 T = K, (3)

Step 2: Equation of armature circuit

The differential equation of the armature circuit is determined using
Kirchhoff's law which is given below.

Q:Raf: ":-Lagr{éé"g# (4’
We know that the back emf is proportional to speed.
% :Ke}g?" (5)
dr

Replacing eq.(5)in eq.(4), we get,
e B By (6)
i dt
Step 3: Torque {Mechanical Effect)
The electrical torque rotates the load at 2 speed 4 against the
moment of inertia J and the viscous friction coefficient B .
This is given as,



i
J—4B—=T =K (7)
PR

Medeiiéhg using transfer function approach

3. Given figure

Applying Laplace transform to eq.(5), (6) and (7), we get,

E,(s)=K,s0(s) (8)
E(s)=R1 (s)+Lsl (s)+E,(s) (9)
Js*0(s)+ Bst(s) =T, (s) =K, L (5) (10)

Simplifying above equations, we get,

_O(s) K,

G(s)

TEG) (s B)R,+5L,) v K,K,)

Formulati ditemnticd capations fom,
fee body iegrmen, o0 T4
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Expression for Rise Time

* Considera 2™ order underdamped system

* Rise time t, is the time to taken by the step response to go from 0 to
100% of the final value i.e., one

e Spty

e g e O | el R e i
e =1=1 Wsm(a}dt + 6) where (6 = cos™1 ()

= sin(wgt, +0) = 0= wyt, +0 =1

t-0 m—cosi{ |

W i
Expression for Peak Time

* Peak time ¢, is the time taken by the step response to reach the peak
value

* Atpeak, the time derivative of response is zero
o ~Sentp

V-39
= (sin(mdtp +8)-y(1-(3) cos(cudtp +6) =0

= si’n{wdtp +0) cosf - cos(wdtp +8)sinf =0 , LT n

P |

5 i wy/(1-09) |

:nsin(wdtp):()m waty =0,m,2m, .. oy
(correspondingto first peak)

_ fwpenp ~{ntp

. dz:lfp" = sm(wdt +9)

e (1 COS(wdt + 9)




Steady State Error

* |t is the error between the actual output and
the desired output ast — o0

B 1m e(t) lm (r(t) y(t))

By final value theorem,

= lime(t) = 1m sE(s)

t»-mo
_Ef_. = __f__ Unity feedback system
. ey
.
2 "lmsE(s) wel E;S()s)
Steady State Error for Standard Inputs
* Unit step input: R(s) .-.-:.:;
sRES)- 1 1

fss = ?»eoi +G(5) i—>01+ G(s) 1R

where K), = n‘% G(s) is called position error constant
S

* Unit ramp {velocity) input:

1
R(s) = -
L

= ms +56(s) SE‘%SG(S) ..--. K,

where K, = tm sG(s) is called velocity error constant

Note: Velocity erroris nat error in the velocity but it is error in position due to rampinput



Steady State Error for Standard Inputs

+ Unit parabolic (acceleration) input:

1
R(s) o
A
1 ; 1 1

£ ?—%32 ¥s2G(s) s%sz(}(s) i

where K, = lim s%G(s) is called acceleration error constant

$-0

* The error constants K, K, and K, describe the ability of a system
to reduce or eliminate steady state errors

¢+ These values mostly depend on the type of the system

« As the type of the system becomes higher, more steady-state
errors are eliminated

62) Routh-Hurwitz Criterion
®* Consider a system with general form of transfer function

P(S)  Bys™ + by ys™ 1 44 bys + by

Tig) = —
(s) g(s) @St ta, st tais+tag

® The characteristic equation of the system is given by
g(s) = aps" + @py SV bt sty =0 2

®* For stability it is necessary to determine whether any roots of the system lies in the RHP
of the s-plane.

®* The characteristic equation is represented in factored form as

q(s) = ap(s —pi)(s —p2) (s —pu) =0 3

ks
> =a,] [s-py=0 4
i=]



®* The Routh-Hurwitz criterion is a necessary and sufficient condition for the stability of
linear time invariant systems.

®* The method requires two step
i. Generating Routh array

ii. Interpreting the Routh array for location of poles in the s-plane.

* The Routh-Hurwitz criterion states that the number of roots of the characteristic equation
with positive real parts is equal to the number of changes in sign of the first column of the
Routh array

Routh Array

= Consider the characteristic equation as in equation ( 2)
q(s) = aps" + @p_ 5"+ o+ ags + qg
= The coefficients of the characteristic equation are arranged as rows in an array as follows

s" ay L a4

n—1
s 2,1 &3 a,. g

® The remaining rows are formed by using the following procedure
s" a, @€, 9

--------

~1 LT ey T
s" Gp-1 Uy 3 dus

2! rh N
§ E bn-dj ’-\bnw:{; b,_3

_ O Qpy — Uuly_3 b - qly g — QuQy5
Wp-2 = »
Ayt Ap—g

= Similarly

e L _bp 0, 5 —a, 1Dy 3
Cpoq = ) €z =
b, 4 by




= The process is continued till s and the complete table of array is obtained as shown below

Interpretation of Routh Array

= For a system to be stable it is sufficient that all elements of the first column in the Routh
array is positive.

8 [f the condition is not met, then the system is unstable and the number of roots with
positive real part is equal to the number of changes in the sign of the elements of the first
column of the array.

STABLE

YES m)  UNSTABLE

No. of Sign Change =
No. of Roots in RHP

6b) Proportional control action

Let us take a closer look at the proportional control action, Consider afirst order plant

i{s)=

Ts+1i
Then the closed-loop transfer function s

CO)= s ®

R(s) E(s)] l { 1 l Y(s)
’ 1 i l l Ts+1 ’

Ts+1 1 i e i TS 1
Tet1+K s Ew~}_sp;e(t]-};xi%s£f(s)-?m

R(s) 1
§)= -
“oTs+1+K K+1

1
14 G(s) 1+ K
"Ts+1

E(s)=

1-—
-=

» Proportional controller has improved the time constantfrom T to E%; However, there is steady state error.

# The steady state error can be reduced by choosing a large K, but high gain has the tendency to destabilize the
higher order plants.



Proportional + Integral Control

Let us look at how Proportional + Integral control fares in this situation.

.E(s) ' i 1 )} Y(S)*
%)

R(s)

The proportional + integral control action eliminated the steady stateerror.

.The proportional term ensuresstability while the Integral termseliminatessteady state error.
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Root Locus of Gis) = K / [s{s+1}{s+2)]
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Bode Plot of G(s) = 8/ [s(1+0.35){1+0.1s}]

40

Magnitude {dB)

T0°° 101 10° 10t 107

102 101 10° 107 107
Freguency (rad/s)

From graph,
e Gain Margin (GM): = 5.4 dB
o Phase Margin (PM): = 20°
9a)
* The polar plot of a sinusoidal transfer function M(jw) is a plot of its magnitude of M(jw)
versus the phase angle of M{jw).

® Thus the polar plots is the locus of the vectors [M(jw)| and 2M (jw) as w is varied from 0 to
0,

* The polar plot is also known as Nyquist Plof,

* Qne advantage of using polar plot is that it depicts the frequency-response characteristics
of a system over the entire frequency range in a single plot.

* One disadvantage is that the plot does not clearly indicate the contributions of each
individual factor of the open loop transfer function,
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10 a)
State space representation (Mathematical Analysis)

* Consider MIMO System as

4 b4

e e i | a2

Input 2wl Controlied System |-———  Suteut
Variables ! w Va?it.""s
") State variable (n) ? ¢

u, Vn

i SR,

X % &

The state representation can be arranged in the form
of n first order differential equations :

* State equation Output equation
ani _ . - "
g A= AT G i) 3 )= G s Bl g 50D
-ﬁiﬂ:.\"Z(r‘;r»f:(x,A-j......a-,,;:ﬁ.u?.....u,;,r} Pl = @ (0 0 Xy )
d‘H”] =X (0 = {8 g Ny, ) Yoy (f) = gvl("-l‘x_? roens Xy 1“1‘”1‘."-"”;-:")

()= f(x,u.1) W) =g(x,u,rn)



State model of a linear time invariant system is a special case of the
general time invariants models ;

In this case, each state variable now becomes linear combination of
system states and inputs, i.e.,
By =X+ 0,0 oot X, by b v+,

By =A% F Xy F o O, X, F Dyl + Dty + A Dy,

X, A% F 0% 4ot @, X vhop, #bn v B u,
In vector matrix form,

X(8) = Ax(1) + Bu(r)
Qutput variables at time ‘t” are linear combination of the values
of the input and state variables at time ‘t’, i.e,,

#nD=g,x (N 4.+, 5O Hdu (D + ..+ dyn {5
M

R EQ T8 N () E N o I 5 (Y T B R R4

¥(t) = Cx(1) + Du(r)
“’az. Ca o Cpy ]
Cgy Ty ey Bay
M M M
'y

[CI(M a1} =

Copn +0e €,

ml m2 "t Ve

The state model of linear time invariant system is given as
X(1y= Ax(t)+ Bu(t) : State equation
(1) =Cx(t)+ Du(r) ; Output equation

where, A : System matrix, B ; Input matrix, C: Qutput matrix,
D : Coupling matrix (Transmission matrix)
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