Code: 23ME3302

II B.Tech - I Semester - Regular Examinations - DECEMBER 2024

MATERIAL SCIENCE AND METALLURGY (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	Define coordination number and atomic packing factor (APF).	L2	CO1
1.b)	What is Peritectic reaction?	L2	CO1
1.c)	Write the differences between low carbon steel and high carbon steels.	L2	CO2
1.d)	List the alloys of titanium and write their properties.	L2	CO2
1.e)	What is cryogenic treatment?	L2	CO3
1.f)	Define Hardening.	L2	CO3
1.g)	Define Powder Metallurgy.	L2	CO4
1.h)	What is granulation in powder metallurgy?	L2	CO4
1.i)	List out the types of glasses.	L2	CO5
1.j)	What is composite? Give examples.	L2	CO5

PART - B

		BL	СО	Max. Marks					
UNIT-I									
2	Stage and explain Hume Rothery's rules with	L2	CO1	10 M					
	suitable examples.								
OR									
3	Discuss the phase diagram of an isomorphous	L2	CO1	10 M					
	alloy system.								
UNIT-II									
4	Discuss the micro structure, properties and	L2	CO2	10 M					
	applications of white cast iron and spheroidal								
	graphite cast iron.								
OR									
5	Explain the Titanium and its alloys.	L2	CO2	10 M					
UNIT-III									
6	Define annealing? List the types of annealing	L2	CO3	10 M					
	and explain the process of annealing.								
OR									
7	Discuss surface hardening methods.	L2	CO3	10 M					
	<u> </u>	l	ı	1					

	UNIT-IV								
8	Discuss	the	applications	of	powder	L3	CO4	10 M	
	metallurg	y.							
OR									
9	Analyze	the pro	ocess of pow	vder m	etallurgy	L3	CO4	10 M	
	including methods of powder preparation.								
UNIT-V									
10	Classify	comp	osites and	expla	in fiber	L3	CO5	10 M	
	reinforced composites.								
OR									
11	Explain	about	nano-materi	als a	nd their	L3	CO5	10 M	
	application	ons.							