II B.Tech - I Semester – Regular Examinations - DECEMBER 2024

DIGITAL LOGIC AND COMPUTER ORGANIZATION (Common for CSE, IT)

Duration: 3 hours	Max. Marks:

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

1	· ·	1 1	1
BL – Blooms Level			CO – Course Outcome

PART – A

		BL	CO
1.a)	Define self-complementing code.	L1	CO1
1.b)	Determine sum of BCD addition of 49 and 55.	L2	CO1
1.c)	Construct full adder using two half adders.	L3	CO4
1.d)	Write the truth table of SR Flip-flop.	L2	CO1
1.e)	Compare register and memory stack.	L2	CO1
1.f)	Sketch flow chart of addition and subtraction with signed magnitude data.	L2	CO2
1)			
1.g)	Distinguish between SRAM and DRAM memories.	L2	CO1
1.h)	What is the page replacement algorithm? List out types.	L2	CO1
1.i)	Compare asynchronous and Synchronous data transfer.	L2	CO2
1.j)	What is DMA read operation?	L1	CO2

70

PART - B

			BL	СО	Max. Marks
		UNIT-I			
2	a)	Express the following function in sum of	L3	CO3	5 M
		minterms and product of maxterms.			
		f = (x y + z) (y + x z).			
	b)	What is the importance of a Gray code?	L2	CO1	5 M
		Convert the following binary codes into			
		corresponding gray code			
		i) 1010110101			
		ii) 01101101110			
		OR	1	1	Γ
3	a)	Reduce the following function using	L3	CO3	5 M
		K-map and implement it using			
		fundamental gates.			
		$f(w, x, y, z) = \Sigma m(1, 3, 4, 5, 6, 9, 11, 12,$			
		13, 14)			
	b)	Prove that NAND and NOR operations	L2	CO1	5 M
		are not associative.			
		UNIT-II			
4	a)	Define decoder. What are its types?	L2	CO4	5 M
		Explain 3X8 line decoder with its truth			
		table and enable inputs.			
	b)	Expand 16x1 line multiplexer tree using	L4	CO4	5 M
		4X1 line multiplexers.			
	OR				

5	a)	Design characteristic equation for JK	L2	CO4	5 M
		flip-flop.			
	b)	Design mod-6 asynchronous counter	L3	CO4	5 M
		using T-flip-flops. Draw timing diagram			
		for continuous clock.			
	-)	UNIT-III	12	COL	5 1
6	a)	Compare among instruction formats of	L3	CO2	5 M
	1 \	the general purpose computer.		GO2	5.3.6
	b)	Design a single digit BCD adder logic	L3	CO2	5 M
		using 4-bit binary adders and appropriate			
		gates.			
		OR		,	
7	a)	Explain Booths multiplication algorithm	L3	CO2	5 M
		for signed two's complement numbers			
		with numerical example.			
	b)	Convert the following arithmetic	L3	CO2	5 M
expressions from infix to reverse polish					
		notation:			
		i. $A*B+C*D+E*F$			
		ii. $A^{*}[B+C^{*}(D+E)]/F^{*}(G+H)$			
		UNIT-IV		· · · · · ·	
8	a)	What is RAM? Explain types of RAMs	L2	CO1	5 M
		with suitable diagrams.			
	b)	What is virtual memory? Give its merits	L2	CO1	5 M
		and demerits.			
OR					

9	a)	Analyze the memory hierarchy in terms	L2	CO1	5 M	
		of speed, size and cost.				
	b)	Explain set associative address mapping	L2	CO1	5 M	
		of cache memory.				
		UNIT-V				
10	a)	Illustrate the daisy-chain priority	L2	CO2	5 M	
		interrupt mechanism for I/O data transfer.				
	b)	Explain source and destination initiated	L2	CO2	5 M	
		data transfer for handshaking.				
	OR					
11	a)	Discuss working principle of DMA with	L2	CO2	5 M	
		a neat diagram.				
	b)	What is an interrupt? Explain interrupt	L2	CO2	5 M	
		cycle of computer.				