Duration: 3 hours

II B.Tech - I Semester – Regular Examinations - DECEMBER 2024

DISCRETE MATHEMATICS AND GRAPH THEORY (Common for CSE, IT, AIML, DS)

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

-	-	 -
BL – Blooms L	evel	CO – Course Outcome

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1.a)	Define Proposition.	L1	CO1
1.b)	What is the Difference between CNF and PCNF.	L1	CO1
1.c)	Let $Q(x)$ be the statement " $x < 2$." What is the	L1	CO2
	truth value of the quantification $\forall x Q(x)$, where		
	the domain consists of all real numbers?		
1.d)	Explain existential quantifier.	L1	CO2
1.e)	Define non-homogeneous recurrence relation of	L2	CO3
	order three.		
1.f)	Solve $a_n + 4a_{n-1} = 2$.	L2	CO3
1.g)	Write Warshall's Algorithm.	L2	CO4
1.h)	Define a Directed Graph.	L1	CO4
1.i)	Define a minimal spanning tree.	L1	CO4
1.j)	Define Hamiltonian Graph.	L1	CO4

Max. Marks: 70

PART – B

			BL	CO	Max. Marks
		UNIT-I			IVIUIII
2	a)	Show that the proposition $(p \lor \neg q) \land$	L2	CO1	5 M
	,	$(\neg p \lor \neg q) \lor q$ is a tautology.			•
	b)		L3	CO2	5 M
	- /	that $[(p \lor q) \to r] \Leftrightarrow [(p \to q) \land (p \to r)]$			
		OR			
3	a)	Construct the truth table of the compound	L2	CO1	5 M
	,	proposition			
		$(p \lor \neg q) \rightarrow (p \land q)$			
	b)	Obtain CDNF of the following	L3	CO2	5 M
		$P \rightarrow ((P \rightarrow Q) \land \neg (\neg Q \lor \neg P))$			
	I	UNIT-II			I
4	a)	Consider these statements "All lions are	L2	CO1	5 M
		fierce", "Some lions do not drink coffee",			
		"Some fierce creatures do not drink			
		coffee" Let $P(x)$, $Q(x)$, and $R(x)$ be the			
		statements "x is a lion", "x is fierce" and			
		"x drinks coffee" respectively. Assuming			
		that the domain consists of all creatures			
		express the statement in the argument			
		using quantifiers and $P(x)$, $Q(x)$ and $R(x)$.			
	b)	Assume that "For all positive integers n,	L3	CO2	5 M
		if n is greater than 4, then n^2 is less than			
		2^{n} , is true. Use universal modus ponens			
		to show that $100^2 < 2100$.			
	OR				

_			12	000	5 1 1
5	a)	Show that the premises "A student in this	L3	CO2	5 M
		class has not read the book," and			
		"Everyone in this class passed the first			
		exam" imply the conclusion "Someone			
		who passed the first exam has not read			
		the book."			
	b)	Use contraposition show that if x and y	L2	CO1	5 M
		are integers and both xy and $x + y$ are			
		even, then both <i>x</i> and <i>y</i> are even.			
UNIT-III					
6	a)	Solve the recurrence relation	L2	CO1	5 M
		$a_n = 7a_{n-1} - 10a_{n-2}$ with $a_0 = 2$ and			
		$a_1 = 3.$			
	b)	Solve the recurrence relation of	L3	CO3	5 M
		Fibonacci sequence of numbers			
		$F_{n+2} = F_{n+1} + F_n$ for $n \ge 0$ given that $F_0 = 0$,			
		$F_1=1.$			
-		OR	L		
7	a)	Solve the following recurrence relation	L3	CO3	5 M
		using characteristic roots.			
		$a_n + 4a_{n-1} + 6a_{n-2} = 0$ and $a_0 = 2$, $a_1 = -7$.			
	b)	Solve	L3	CO3	5 M
		$a_n - 9a_{n-1} + 26a_{n-2} - 24a_{n-3} = 0,$			
		for $n \ge 3$.			
UNIT-IV					
8	a)	Draw the Hasse diagram representing the	L2	CO1	5 M
		positive divisors of 36.			
	b)	Show that the following graphs are	L4	CO4	5 M
		isomorphic.			
		1			

		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
		G_1 G_2			
		OR	T	1	
9	a)	Show that congruence modulo m is an equivalence relation on integers.	L2	CO1	5 M
	b)	Draw the Hasse diagram representing the	L4	CO4	5 M
		partial ordering {(a, b)/a divides b}			
		on {1, 2, 3, 4, 6, 8, 12}.			
		UNIT-V	1		
10	a)	Write about Euler's circuit and	L2	CO1	5 M
		Hamiltonian cycle with suitable examples.			
	b)	Explain DFS algorithm to find spanning	L4	CO4	5 M
		tree of a graph with suitable example.			
		OR			
11	Sho	ow step by step Kruskal's algorithm on the	L4	CO4	10 M
	foll	owing connected weighted graph and also			
	calculate sum of the weights of the minimal spanning tree?				