

Summer Internship

Course Code	23DS3591	Year	III	Semester	I
Course Category	Internship	Branch	CSE (Data Science)	Course Type	Practical
Credits	2	L-T-P	0-0-0	Prerequisites	-
Continuous Evaluation :	-	Semester End	50	Total Marks:	50

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1	Demonstrate effective communication of domain knowledge during the internship through professional oral presentations and the submission of clear, comprehensive technical documentation.	L2
CO2	Apply engineering fundamentals, domain knowledge, and appropriate modern IT tools to effectively solve real-world complex engineering problems.	L3
CO3	Analyze complex engineering problems by reviewing relevant literature, identifying patterns, risks, and critical factors, and developing robust solutions with due consideration for sustainability.	L4
CO4	Evaluating complex engineering problems by comparing alternative methodologies using modelling and data interpretation to derive valid and feasible conclusions.	L5

Contribution of Course Outcomes towards achievement of Program Outcome & Strength of correlation (3: High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1									3				
CO2	3				3						2	3	
CO3		3									2		3
CO4				3							2		