

Code: 23DS3501

III B.Tech - I Semester - Regular Examinations - NOVEMBER 2025**MACHINE LEARNING**
(CSE - DS)**Duration: 3 hours****Max. Marks: 70**

Note: 1. This question paper contains two Parts A and B.
 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART – A

		BL	CO
1.a)	Differentiate between Supervised and Unsupervised Learning.	L2	CO1
1.b)	Define deployment in the context of ML projects.	L2	CO1
1.c)	What is the role of gradient descent in regression?	L2	CO2
1.d)	What is binary classification in logistic regression?	L2	CO4
1.e)	Interpret attribute selection measure in decision trees.	L2	CO2
1.f)	List any two distance metrics used in KNN.	L2	CO4
1.g)	What is meant by a margin in SVM?	L2	CO1
1.h)	Summarize the role of activation functions in neural networks.	L2	CO2
1.i)	State two differences between similarity and dissimilarity measures.	L2	CO3
1.j)	Define divisive hierarchical clustering.	L2	CO3

PART – B

			BL	CO	Max. Marks
UNIT-I					
2	a)	Define Machine Learning and explain its need in modern systems.	L2	CO1	4 M
	b)	Survey various types of Machine Learning with examples.	L4	CO1	6 M
OR					
3	a)	Interpret the phases of CRISP-DM methodology.	L3	CO1	6 M
	b)	Compare CRISP-DM with the End-to-End ML workflow.	L4	CO1	4 M
UNIT-II					
4	a)	Derive the mathematical equation for simple linear regression.	L3	CO2	5 M
	b)	Explain the process of model fitting in simple regression with an example.	L2	CO2	5 M
OR					
5	a)	Define polynomial regression with an example.	L2	CO4	5 M
	b)	Examine any two applications of polynomial regression.	L3	CO4	5 M
UNIT-III					
6	a)	Explain the concept of decision tree induction.	L2	CO1	5 M
	b)	Describe the representation of a decision tree with a simple example.	L2	CO2	5 M

OR

7	a)	Explain any two applications of Naive Bayes.	L4	CO2	5 M
	b)	Analyze the impact of different distance metrics on the performance of KNN algorithm, provide examples.	L4	CO4	5 M

UNIT-IV

8	a)	Explain the relationship between biological neurons and artificial neurons.	L2	CO1	5 M
	b)	Draw and explain the structure of an artificial neuron model.	L3	CO2	5 M

OR

9	a)	Explain the concept of a feedforward neural network with a diagram.	L2	CO2	5 M
	b)	Illustrate the concept of margin and support vectors in SVM. How do they contribute to the classification process?	L3	CO1	5 M

UNIT-V

10	a)	Explain the K-Means algorithm with suitable pseudocode.	L2	CO3	5 M
	b)	Compare and Contrast K-Means and K-Medoids.	L4	CO4	5 M

OR

11	a)	Explain the working of agglomerative hierarchical clustering.	L2	CO3	5 M
	b)	Demonstrate linkage criteria (single, complete, average) with examples.	L3	CO4	5 M