ROBOTICS

Course code	20ME2702B	Year	IV	Semester	I	
Course	Open	Offering	ME	Course Tyme	Theory	
category	Elective-4	Branch	IVIE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Nil	
Continuous		Semester				
Internal	30	End	70	Total Marks	100	
Evaluation		Evaluation				

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	Level	Units
CO1	Understand the basic anatomy of robots, actuators, end effectors, robot sensors, programming and applications.	Understand	L2	1,2,3,4,5
CO2	Understand the working principles of robot actuators, end effectors	Understand	L2	2
CO3	Apply robot programming skills	Apply, Modern Tool Usage	L3	3
CO4	Apply knowledge of robot sensors and their applications in industries	Apply	L3	4,5

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	√												$\sqrt{}$	√
CO2	V	V											√	V
CO3	V	√	√		√								V	√
CO4			√										1	

	Syllabus					
UNIT	Contents	Mapped COs				
I	Introduction: Automation and robotics – History of robots -Robot anatomy – classification of robots, major components-robot specifications, selection of robots.	CO1				
II	Robot actuators - Pneumatic, Hydraulic actuators, electric & stepper motors End Effectors - types of end effectors, grippers and tools, Requirements and challenges of end effectors.	CO1, CO2				
III	Robot Programming: - Robot programming languages - programming methods - off and on-line programming - Lead through method - Teach pendent method, simple programs.	CO1, CO3				
IV	Sensors used in robots: Sensor devices, Types of sensors - contact, position and displacement sensors, Force and torque sensors - Proximity and range sensors - acoustic sensors -slip sensors, Robot vision systems	CO1, CO4				
V	Applications of robots: Application of robots in industry - material handling, processing operations, assembly, and inspection operations.	CO1, CO4				

Learning Resource

Text books:

- 1. Mikell P. Groover. Industrial Robotics Technology Programming and Applications, McGraw Hill Co., Singapore, 1995.
- 2. Robotic Engineering by Richard D.Klafter, Prentice Hall

Reference books

- 1. Introduction to Robotics Saeed B.Niku, Prentice Hall
- 2. Introduction to Robotics John J. Craig, Addison Wesley

E-Resources & other digital Material:

1. http://nptel.ac.in/downloads/112101098/