
Planning a Software

Project

UNIT-4

Project Planning 2

Agenda

Background

Effort estimation

Schedule and resource estimation

Quality Planning

Risk management

Project monitoring plans

Project Planning 3

Software Project

Goal: Build a software system to meet
commitments on cost, schedule, quality

Worldwide - many projects fail

one-third are runaways with cost or schedule

overrun of more than 125%

Project Planning 4

Project Failures

Major reasons for project runaways

unclear objectives

bad planning

no project management methodology

new technology

insufficient staff

All of these relate to project management

Effective project management is key to
successfully executing a project

Project Planning 5

Why improve PM?

Better predictability leading to
commitments that can be met

Lower cost through reduced rework,
better resource mgmt, better planning,..

Improved quality through proper quality
planning and control

Better control through change control,
CM, monitoring etc.

Project Planning 6

Why improve PM ….

Better visibility into project health and
state leading to timely intervention

Better handling of risks reducing the
chances of failure

All this leads to higher customer
satisfaction

And organization improvement

Project Planning 7

The Project Mgmt Process

Has three phases - planning, monitoring
and control, and closure

Planning is done before the much of the
engineering process (life cycle, LC) and
closure after the process

Monitoring phase is in parallel with LC

We focus on planning; monitoring covered
through its planning

Project Planning 8

Project Planning

Basic objective: To create a plan to meet
the commitments of the project, I.e.
create a path that, if followed, will lead to
a successful project

Planning involves defining the LC process
to be followed, estimates, detailed
schedule, plan for quality, etc.

Main output - a project management plan
and the project schedule

Project Planning 9

Key Planning Tasks

Estimate effort

Define project milestones and create a schedule

Define quality objectives and a quality plan

Identify risks and make plans to mitigate them

Define measurement plan, project-tracking

procedures, training plan, team organization, etc.

Effort Estimation

Project Planning 11

Effort Estimation

For a project total cost and duration has
to be committed in start

Requires effort estimation, often in terms
of person-months

Effort estimate is key to planning -
schedule, cost, resources depend on it

Many problems in project execution stem
from improper estimation

Project Planning 12

Estimation..

No easy way, no silver bullet

Estimation accuracy can improve with more
information about the project

Early estimates are more likely to be
inaccurate than later

More uncertainties in the start

With more info, estimation becomes easier

Project Planning 13

Estimation accuracy

Project Planning 14

Effort Estimation Models..

A model tries to determine the effort
estimate from some parameter values

A model also requires input about the
project, and cannot work in vacuum

So to apply a model, we should be able to
extract properties about the system

Two types of models - top-down and
bottom-up

Project Planning 15

Effort Estimation Models

Extract Estimation Model

Values of some
characteristics

Effort Estimate

Knowledge about
SW project

Project Planning 16

Top down estimation

First determines the total effort, then effort for
components

Simple approach – estimate effort from size and
productivity
Get the estimate of the total size of the software

Estimate project productivity using past data and project
characteristics

Obtain the overall effort estimate from productivity and
size estimates

Effort distribution data from similar project are
used to estimate effort for different phases

Project Planning 17

Top-down Estimation

A better method is to have effort estimate
as a function of size using:
 Effort = a * size b

E is in person-months, size in KLOC

Incorporates the observation that
productivity can dip with increased size

Constants a and b determined through
regression analysis of past project data

Project Planning 18

COCOMO Model

Uses size, but adjusts using some factors

Basic procedure

Obtain initial estimate using size

Determine a set of 15 multiplying factors
from different project attributes

Adjust the effort estimate by scaling it with
the final multiplying factor

Project Planning 19

COCOMO..

Initial estimate: a * size b ; some standard
values for a, b given for diff project types

There are 15 cost driver attributes like reliability,
complexity, application experience, capability, …

Each factor is rated, and for the rating a
multiplication factor is given

Final effort adjustment factor is the product of
the factors for all 15 attributes

Project Planning 20

COCOMO – Some cost drivers

Cost Driver Very
low

Low Nominal High Very
High

Required reliability

Database size

Product complexity

Execution time constraint

Memory constraint

Analyst capability

Application experience

Programmer capability

Use of software tools

Development schedule

.75

.7

1.46

1.29

1.42

1.24

1.23

.88

.94

.85

1.19

1.13

1.17

1.10

1.08

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.15

1.08

1.15

1.11

1.06

.86

.91

.86

.91

1.04

1.4

1.16

1.3

1.3

1.21

.71

.82

.70

.83

1.1

Project Planning 21

COCOMO – effort distribution

Effort distribution among different phases
is given as a percent of effort

Eg. For medium size product it is

Product design – 16%

Detailed design – 24%

Coding and UT – 38%

Integration and test – 22%

Project Planning 22

Bottom-up Estimation

An alternate approach to top-down

Effort for components and phases first
estimated, then the total

Can use activity based costing - all
activities enumerated and then each
activity estimated separately

Can group activities into classes - their
effort estimate from past data

Project Planning 23

An Estimation Procedure

Identify programs in the system and classify
them as simple, medium, or complex (S/M/C)

Define the average coding effort for S/M/C

Get the total coding effort.

Use the effort distribution in similar projects to
estimate effort for other tasks and total

Refine the estimates based on project specific
factors

Scheduling and Staffing

Project Planning 25

Project Schedule

A project Schedule is at two levels -
overall schedule and detailed schedule

Overall schedule comprises of major
milestones and final date

Detailed schedule is the assignment of
lowest level tasks to resources

Project Planning 26

Overall Schedule

Depends heavily on the effort estimate

For an effort estimate, some flexibility
exists depending on resources assigned

Eg a 56 person-months project can be
done in 8 months with 7 people, or 7
months with 8 people

Stretching a schedule is easy;
compressing is hard and expensive

Project Planning 27

Overall Scheduling...

One method is to estimate schedule S (in
months) as a function of effort in PMs

Can determine the fn through analysis of
past data; the function is non linear

COCOMO: S = 2.5 E 3.8

Often this schedule is checked and
corrected for the specific project

One checking method – square root check

Project Planning 28

Determining Overall

Schedule from past data

Effort in person-days

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400 1600 1800

S
c
h

e
d

u
le

 (
D

a
y
s)

Project Planning 29

Determining Milestones

With effort and overall schedule decided,
avg project resources are fixed

Manpower ramp-up in a project decides
the milestones

Manpower ramp-up in a project follows a
Rayleigh curve - like a normal curve

In reality manpower build-up is a step
function

Project Planning 30

Manpower Ramp-up

Design Build Test

PTS

Project Planning 31

Milestones ...

With manpower ramp-up and effort distribution,
milestones can be decided

Effort distribution and schedule distribution in
phases are different

Generally, the build has larger effort but not
correspondingly large schedule

COCOMO specifies distr of overall sched. Design
– 19%, programming – 62%, integration – 18%

Project Planning 32

An Example Schedule

Task Dur.
(days)

Work (p-

days)

Start
Date

End
Date

Project Init tasks 33 24 5/4 6/23

Training 95 49 5/8 9/29

Knowledge sharing 78 20 6/2 9/30

Elaboration iteration I 55 55 5/15 6/23

Construction iteration I 9 35 7/10 7/21

Project Planning 33

Detailed Scheduling

To reach a milestone, many tasks have to
be performed

Lowest level tasks - those that can be done
by a person (in less than 2-3 days)

Scheduling - decide the tasks, assign them
while preserving high-level schedule

Is an iterative task - if cannot “fit” all tasks,
must revisit high level schedule

Project Planning 34

Detailed Scheduling

Detailed schedule not done completely in
the start - it evolves

Can use Microsoft Project for keeping it

Detailed Schedule is the most live
document for managing the project

Any activity to be done must get reflected
in the detailed schedule

Project Planning 35

An example task in detail

schedule

Module Act Code Task Duration Effort

History PUT Unit test #
17

1 day 7 hrs

St. date End date %comp Depend. Resource

7/18 7/18 0% Nil SB

Project Planning 36

Detail schedule

Each task has name, date, duration,
resource etc assigned

% done is for tracking (tools use it)

The detailed schedule has to be
consistent with milestones

Tasks are sub-activities of milestone level
activities, so effort should add up, total
schedule should be preserved

Quality Planning

Project Planning 38

Quality Planning

Delivering high quality is a basic goal

Quality can be defined in many ways

Current industry standard - delivered
defect density (e.g. #defects/KLOC)

Defect - something that causes software
to behave in an inconsistent manner

Aim of a project - deliver software with
low delivered defect density

Project Planning 39

Defect Injection and

Removal

Software development is labor intensive

Defects are injected at any stage

As quality goal is low delivered defect
density, these defects have to be removed

Done primarily by quality control (QC)
activities of reviews and testing

Project Planning 40

Defect Injection and

Removal

Req.
Analysis

Design R Coding R UT IT/ST AT

Development
Process

Defect Injection

R

Defect Removal

Project Planning 41

Approaches to Quality

Management

Ad hoc - some testing, some reviews
done as and when needed

Procedural - defined procedures are
followed in a project

Quantitative - defect data analysis done
to manage the quality process

Project Planning 42

Procedural Approach

A quality plan defines what QC tasks will
be undertaken and when

Main QC tasks - reviews and testing

Guidelines and procedures for reviews
and testing are provided

During project execution, adherence to
the plan and procedures ensured

Project Planning 43

Quantitative Approach

Goes beyond asking “has the procedure
been executed”

Analyzes defect data to make judgements
about quality

Past data is very important

Key parameters - defect injection and
removal rates, defect removal efficiency
(DRE)

Project Planning 44

Quality Plan

The quality plan drives the quality
activities in the project

Level of plan depends on models available

Must define QC tasks that have to be
performed in the project

Can specify defect levels for each QC
tasks (if models and data available)

Risk Management

Project Planning 46

Risk Management

Any project can fail - reasons can be
technical, managerial, etc.

Project management aims to tackle the
project management aspect

Engineering life cycles aim to tackle the
engineering issues

A project may fail due to unforeseen events
- risk management aims to tackle this

Project Planning 47

Risk Management

Risk: any condition or event whose
occurrence is not certain but which can
cause the project to fail

Aim of risk management: minimize the
effect of risks on a project

Risk management has two basic aspects
Risk assessment

Risk control

Project Planning 48

Risk Assessment

To identify possible risks to a project, i.e.
to those events that might occur and
which might cause the project to fail

No “algorithm” possible, done by “what
ifs”, checklists, past experience

Can have a list of “top 10” risks that
projects have seen in past

Project Planning 49

Top Risk Examples

Shortage of technically trained manpower

Too many requirement changes

Unclear requirements

Not meeting performance requirements

Unrealistic schedules

Insufficient business knowledge

Working on new technology

Project Planning 50

Risk Prioritization

The number of risks might be large

Must prioritize them to focus attention on
the “high risk” areas

For prioritization, impact of each risk must
be understood

In addition, probability of the risk
occurring should also be understood

Project Planning 51

Risk Prioritization ...

Risk exposure (RE) = probability of risk
occurring * risk impact

RE is the expected value of loss for a risk

Prioritization can be done based on risk
exposure value

Plans can be made to handle high RE risks

Project Planning 52

A Simple approach to Risk

Prioritization

Classify risk occurrence probabilities as:
Low, Medium, High

Classify risk impact as: Low, Medium, High

Identify those that are HH, or HM/MH

Focus on these for risk mitigation

Will work for most small and medium sized
projects

Project Planning 53

Risk Control

Can the risk be avoided?

E.g. if new hardware is a risk, it can be
avoided by working with proven hardware

For others, risk mitigation steps need to
be planned and executed

Actions taken in the project such that if the
risk materializes, its impact is minimal

Involves extra cost

Project Planning 54

Risk Mitigation Examples

Too many requirement changes

Convince client that changes in requirements
will have an impact on the schedule

Define a procedure for requirement changes

Maintain cumulative impact of changes and
make it visible to client

Negotiate payment on actual effort.

Project Planning 55

Examples ...

Manpower attrition

Ensure that multiple resources are assigned
on key project areas

Have team building sessions

Rotate jobs among team members

Keep backup resources in the project

Maintain documentation of individual’s work

Follow the CM process and guidelines strictly

Project Planning 56

Examples ...

Unrealistic schedules

Negotiate for better schedule

Identify parallel tasks

Have resources ready early

Identify areas that can be automated

If the critical path is not within the schedule,
negotiate with the client

Negotiate payment on actual effort

Project Planning 57

Risk Mitigation Plan

Risk mitigation involves steps that are to
be performed (hence has extra cost)

It is not a paper plan - these steps should
be scheduled and executed

These are different from the steps one
would take if the risk materializes - they
are performed only if needed

Risks must be revisited periodically

Project Planning 58

A Practical Risk Mgmt

Approach

 Based on methods of some orgs

1. List risks; for each risk rate probability as
Low, Medium, High

2. For each risk assess impact on the project
as Low, medium, High

3. Rank the risks based on probability and
impact – HH is the highest

4. Select top few items for mitigation

Project Planning 59

A risk mgmt plan

Risk Prob Impact Exposure

1. Failure to meet perf
reqs

High High High

2. Lack of people with
right skills

Med Med Med

3. Complexity of the
application

Med Med Med

4. Unclear
requirements

Med Med Med

Project Planning 60

Risk Mgmt plan…
Risk Mitigation plan

1. Failure to
meet perf reqs

Train team in perf engg

Have perf testing scripts

Use suitable tools

2. Lack of people
with right skills

Train resources

Develop suitable standards

3. Complexity of
the application

Ensure ongoing k transfer

Use people with domain exp

4. Unclear
requirements

Have multiple reviews

Build prototype

Project Monitoring Plans

Project Planning 62

Background

A plan is a mere document that can guide

It must be executed

To ensure execution goes as per plan, it
must be monitored and controlled

Monitoring requires measurements

And methods for interpreting them

Monitoring plan has to plan for all the
tasks related to monitoring

Project Planning 63

Measurements

Must plan for measurements in a project

Without planning, measurements will not be
done

Main measurements – effort, size, schedule, and
defects
Effort – as this is the main resource; often tracked

through effort reporting tools

Defects – as they determine quality; often defect
logging and tracking systems used

During planning – what will be measured, how,
tool support, and data management

Project Planning 64

Project Tracking

Goal: To get visibility in project execution
so corrective actions can be taken when
needed to ensure project succeeds

Diff types of monitoring done at projects;
measurements provide data for it

Project Planning 65

Tracking…

Activity-level monitoring

Each activity in detailed schd is getting done

Often done daily by managers

A task done marked 100%; tools can determine
status of higher level tasks

Status reports

Generally done weekly to take stock

Summary of activities completed, pending

Issues to be resolved

Project Planning 66

Tracking…

Milestone analysis
A bigger review at milestones

Actual vs estimated for effort and sched is
done

Risks are revisited

Changes to product and their impact may be
analyzed

Cost-schedule milestone graph is another
way of doing this

Project Planning 67

Project Management Plan

The project management plan (PMP)
contains outcome of all planning activities -
focuses on overall project management

Besides PMP, a project schedule is needed

Reflects what activities get done in the project

Microsoft project (MSP) can be used for this

Based on project planning; is essential for day-
to-day management

Does not replace PMP !

Project Planning 68

PMP Structure - Example

Project overview - customer, start and
end date, overall effort, overall value,
main contact persons, project milestones,
development environment..

Project planning - process and tailoring,
requirements change mgmt, effort
estimation, quality goals and plan, risk
management plan, ..

Project Planning 69

PMP Example ...

Project tracking - data collection, analysis
frequency, escalation procedures, status
reporting, customer complaints, …

Project team, its organization, roles and
responsibility, …

Project Planning 70

Project Planning -

Summary

Project planning forms the foundation of
project management

Key aspects: effort and schedule estimation,
quality planning, risk mgmt., …

Outputs of all can be documented in a PMP,
which carries all relevant info about project

Besides PMP, a detailed project schedule
maintains tasks to be done in the project

Design

Software Design

 Design activity begins with a set of requirements, and
maybe an architecture

 Design done before the system is implemented

 Design focuses on module view – i.e. what modules
should be in the system

 Module view may have easy or complex relationship
with the C&C view

 Design of a system is a blue print for implementation

 Often has two levels – high level (modules are defined),
and detailed design (logic specified)

Design…

 Design is a creative activity

 Goal: to create a plan to satisfy requirements

 Perhaps the most critical activity during system
development

 Design determines the major characteristics of a system

 Has great impact on testing and maintenance

 Design document forms reference for later phases

 Design methodology – systematic approach for creating
a design

Design Concepts

Design is correct, if it will satisfy all the
requirements and is consistent with
architecture

Of the correct designs, we want best
design

We focus on modularity as the main
criteria (besides correctness)

Modularity

 Modular system – in which modules can be built
separately and changes in one have minimum
impact on others

 Modularity supports independence of models
 Modularity enhances design clarity, eases

implementation
 Reduces cost of testing, debugging and

maintenance
 Cannot simply chop a program into modules to get

modularly
 Need some criteria for decomposition – coupling

and cohesion are such criteria

Coupling

 Independent modules: if one can function
completely without the presence of other

 Independence between modules is desirable
Modules can be modified separately

Can be implemented and tested separately

Programming cost decreases

 In a system all modules cannot be independent

 Modules must cooperate with each other

 More connections between modules
More dependent they are

 More knowledge about one module is required to
understand the other module.

 Coupling captures the notion of dependence

Coupling…

Coupling between modules is the strength of
interconnections between modules

In general, the more we must know about
module A in order to understand module B the
more closely connected is A to B

"Highly coupled" modules are joined by strong
interconnection

"Loosely coupled" modules have weak
interconnections

Coupling…

Goal: modules as loosely coupled as possible

Where possible, have independent modules

Coupling is decided during high level design

Cannot be reduced during implementation

Coupling is inter-module concept

Major factors influencing coupling
 Type of connection between modules

Complexity of the interface

Type of information flow between modules

Coupling – Type of

connection

 Complexity and obscurity of interfaces increase coupling

 Minimize the number of interfaces per module

 Minimize the complexity of each interface

 Coupling is minimized if
Only defined entry of a module is used by others

 Information is passed exclusively through parameters

 Coupling increases if
Indirect and obscure interface are used

 Internals of a module are directly used

Shared variables employed for communication

Coupling – interface

complexity

Coupling increases with complexity of interfaces
eg. number and complexity of parms

Interfaces are needed to support required
communication

Often more than needed is used eg. passing
entire record when only a field is needed

Keep the interface of a module as simple as
possible

Coupling – Type of Info

flow

Coupling depends on type of information flow
Two kinds of information: data or control.
Transfer of control information

 Action of module depends on the information
 Makes modules more difficult to understand

Transfer of data information
Module can be treated as input-output function

Lowest coupling: interfaces with only data
communication

 Highest: hybrid interfaces

Coupling - Summary

Coupling Interface Type of Type of
 complexity connections commu-
 nication

Low Simple to module data
 obvious by name

High complicated to internal Hybrid
 obscure elements

Coupling in OO Systems

In OO systems, basic modules are classes,
which are richer than fns

OO Systems have three types of coupling

Interaction coupling

Component coupling

Inheritance coupling

Coupling in OO -

Interaction

Interaction coupling occurs due to
methods of a class invoking methods of
other classes
Like calling of functions

Worst form if methods directly access
internal parts of other methods

Still bad if methods directly manipulate
variables of other classes

Passing info through tmp vars is also bad

Coupling in OO …

Least interaction coupling if methods
communicate directly with parameters

With least number of parameters

With least amount of info being passed

With only data being passed

I.e. methods should pass the least
amount of data, with least no of parms

Coupling in OO -

Component

Component coupling – when a class A has
variables of another class C
A has instance vars of C

A has some parms of type C

A has a method with a local var of type C

When A is coupled with C, it is coupled with all
subclasses of C as well

Component coupling will generally imply the
presence of interaction coupling also

Coupling in OO -

Inheritance

Inheritance coupling – two classes are coupled if
one is a subclass of other

Worst form – when subclass modifies a
signature of a method or deletes a method

Coupling is bad even when same signature but
a changed implementation

Least, when subclass only adds instance vars
and methods but does not modify any

Cohesion

 Coupling characterized the inter-module bond

 Reduced by minimizing relationship between elts of
different modules

 Another method of achieving this is by maximizing
relationship between elts of same module

 Cohesion considers this relationship

 Interested in determining how closely the elements
of a module are related to each other

 In practice both are used

Cohesion…

Cohesion of a module represents how tightly
bound are the elements of the module

Gives a handle about whether the different
elements of a module belong together

High cohesion is the goal

Cohesion and coupling are interrelated

Greater cohesion of modules, lower coupling
between module

Correlation is not perfect.

Levels of Cohesion

 There are many levels of cohesion.

Coincidental

Logical

Temporal

Communicational

Sequential

Functional

 Coincidental is lowest, functional is highest

 Scale is not linear

 Functional is considered very strong

Determining Cohesion

 Describe the purpose of a module in a sentence

 Perform the following tests

1. If the sentence has to be a compound sentence, contains
more than one verbs, the module is probably performing
more than one function. Probably has sequential or
communicational cohesion.

2. If the sentence contains words relating to time, like "first",
"next", "after", "start" etc., the module probably has
sequential or temporal cohesion.

3. If the predicate of the sentence does not contain a

single specific object following the verb, the module
is probably logically cohesive. Eg "edit all data", while
"edit source data" may have functional cohesion.

4. Words like "initialize", "clean-up" often imply
temporal cohesion.

 Functionally cohesive module can always be
described by a simple statement

Cohesion in OO Systems

In OO, different types of cohesion is possible as
classes are the modules
Method cohesion
Class cohesion
Inheritance cohesion

Method cohesion – why diff code elts are
together in a method
Like cohesion in functional modules; highest form is

if each method implements a clearly defined function
with all elts contributing to implementing this
function

Cohesion in OO…

Class cohesion – why diff attributes and
methods are together in a class
A class should represent a single concept

with all elts contributing towards it

Whenever multiple concepts encapsulated,
cohesion is not as high

A symptom of multiple concepts – diff gps of
methods accessing diff subsets of attributes

Cohesion in OO…

Inheritance cohesion – focuses on why
classes are together in a hierarchy

Two reasons for subclassing – generalization-
specialization and reuse

Cohesion is higher if the hierarchy is for
providing generalization-specialization

Open-closed Principle

 Besides cohesion and coupling, open closed principle
also helps in achieving modularity

 Principle: A module should be open for extension but
closed for modification
Behavior can be extended to accommodate new requirements,

but existing code is not modified

I.e. allows addition of code, but not modification of existing
code

Minimizes risk of having existing functionality stop working due
to changes – a very important consideration while changing
code

Good for programmers as they like writing new code

Open-closed Principle…

In OO this principle is satisfied by using
inheritance and polymorphism

Inheritance allows creating a new class to
extend behavior without changing the original
class

This can be used to support the open-closed
principle

Consider example of a client object which
interacts with a printer object for printing

Example

Example..

Client directly calls methods on Printer1

If another printer is to be allowed

A new class Printer2 will be created

But the client will have to be changed if it wants to
use Printer 2

Alternative approach

Have Printer1 a subclass of a general Printer

For modification, add another subclass Printer 2

Client does not need to be changed

Example…

Liskov’s Substitution
Principle

Principle: Program using object o1 of base
class C should remain unchanged if o1 is
replaced by an object of a subclass of C

If hierarchies follow this principle, the
open-closed principle gets supported

Summary

Goal of designing is to find the best
possible correct design

Modularity is the criteria for deciding
quality of the design

Modularity enhanced by low coupling,
high cohesion, and following open-
closed principle

Function Oriented Design

and Structured Design

Methodology

Program Structure and Structure

Charts

 Every program has a structure

 Structure Chart - graphic representation of structure

 SC represents modules and interconnections

 Each module is represented by a box

 If A invokes B, an arrow is drawn from A to B

 Arrows are labeled by data items

 Different types of modules in a SC

 Input, output, transform and coordinate modules

 A module may be a composite

Structure charts…

SC shows the static structure, not the logic

Different from flow charts

Major decisions and loops can be shown

Structure is decided during design

Implementation does not change structure

Structure effects maintainability

SDM aims to control the structure

SC of a Sort Program

Diff types of modules

Iteration and decision

STRUCTURED DESIGN

METHODOLOGY

 SDM views software as a transformation function that
converts given inputs to desired outputs

 The focus of SD is the transformation function

 Uses functional abstraction

 Goal of SDM: Specify functional modules and
connections

 Low coupling and high cohesion is the objective

Transformation

functions Input Output

Steps in SD

1. Draw a DFD of the system

2. Identify most abstract inputs and most
abstract outputs

3. First level factoring

4. Factoring of input, output, transform
modules

5. Improving the structure

1. Data Flow Diagrams

SD starts with a DFD to capture flow of data
in the proposed system

DFD is an important representation; provides
a high level view of the system

Emphasizes the flow of data through the
system

Ignores procedural aspects
(Purpose here is different from DFDs used in

requirements analysis, thought notation is the
same)

Drawing a DFG

 Start with identifying the inputs and outputs
 Work your way from inputs to outputs, or vice versa

If stuck, reverse direction
Ask: "What transformations will convert the inputs to

outputs"
 Never try to show control logic.

If thinking about loops, if-then-else, start again
 Label each arrow carefully
 Make use of * and +, and show sufficient detail
 Ignore minor functions in the start
 For complex systems, make dfg hierarchical
 Never settle for the 1st dfg

Step 2 of SD Methodology

Generally a system performs a basic function
 Often cannot be performed on inputs directly
 First inputs must be converted into a suitable

form
 Similarly for outputs - the outputs produced
 by main transforms need further processing
 Many transforms needed for processing inputs

and outputs
Goal of step 2 is to separate such transforms

from the basic transform centers

Step 2…

Most abstract inputs: data elements in dfg that
are furthest from the actual inputs, but can still
be considered as incoming

These are logical data items for the
transformation

May have little similarity with actual inputs.

Often data items obtained after error checking,
formatting, data validation, conversion etc.

Step 2…

 Travel from physical inputs towards outputs until data
can no longer be considered incoming

 Go as far as possible, without loosing the incoming
nature

 Similarly for most abstract outputs
 Represents a value judgment, but choice is often

obvious
 Bubbles between mai and mao: central transforms
 These transforms perform the basic transformation
 With mai and mao the central transforms can

concentrate on the transformation

Step 2…

Problem View: Each system does some i/o and
some processing

In many systems the i/o processing forms the
large part of the code

This approach separates the different functions
subsystem primarily performing input

subsystem primarily performing transformations

subsystem primarily performing output presentation

Example 1 – counting the

no of different words in a

file

Example 2 – ATM

3. First Level Factoring

 First step towards a structure chart

 Specify a main module

 For each most abstract input data item, specify a
subordinate input module

 The purpose of these input modules is to deliver to
main the mai data items

 For each most abstract output data element, specify
an output module

 For each central transform, specify a subordinate
transform module

 Inputs and outputs of these transform modules are
specified in the DFD

 First level factoring is straight forward

 Main module is a coordinate module

 Some subordinates are responsible for delivering the
logical inputs

 These are passed to transform modules to get them
converted to logical outputs

 Output modules then consume them

 Divided the problem into three separate problems

 Each of the three diff. types of modules can be
designed separately

 These modules are independent

Example 1

Example 2

4. Factoring Input modules

 The transform that produced the mai data is treated
as the central transform

 Then repeat the process of first level factoring

 Input module being factored becomes the main
module

 A subordinate input module is created for each data
item coming in this new central transform

 A subordinate module is created for the new central
transform

 Generally there will be no output modules

 The new input modules are factored similarly Till the
physical inputs are reached

 Factoring of the output modules is symmetrical

 Subordinates - a transform and output modules

 Usually no input modules

Example 1

Factoring Central

Transforms

 Factoring i/o modules is straight forward if the DFD is
detailed

 No rules for factoring the transform modules

 Top-down refinement process can be used

 Goal: determine sub-transforms that will together
compose the transform

 Then repeat the process for newly found transforms

 Treat the transform as a problem in its own right

 Draw a data flow graph

 Then repeat the process of factoring

 Repeat this till atomic modules are reached

Example 1

5. Improving Design

through Heuristics

 The above steps should not be followed blindly
 The structure obtained should be modified if needed
 Low coupling, high cohesion being the goal
 Design heuristics used to modify the initial design
 Design heuristics - A set of thumb rules that are

generally useful
 Module Size: Indication of module complexity

Carefully examine modules less than a few lines or
greater than about 100 lines

 Fan out and fan in
 A high fan out is not desired, should not be increased

beyond 5 or 6
 Fan in should be maximized

 Scope of effect of a module: the modules affected by
a decision inside the module

 Scope of control: All subordinates of the module

 Good thumb rule:

 For each module scope of effect should be a subset
of scope of control

 Ideally a decision should only effect immediate
subordinates

 Moving up the decision, moving the module down
can be utilized to achieve this

Summary

 Structured design methodology is one way to create
modular design

 It partitions the system into input subsystems, output
subsystems & transform subsystems

 Idea: Many systems use a lot of code for handling
inputs & outputs

 SDM separates these concerns

 Then each of the subsystems is factored using the
DFD

 The design is finally documented & verified before
proceeding

Object Oriented Design

and UML

OO Concepts

OO Concepts

Information hiding – use encapsulation to
restrict external visibility

OO encapsulates the data, provides
limited access, visibility

Info hiding can be provided without OO –
is an old concept

OO Concepts…

State retention – fns, procedures do not
retain state; an object is aware of its past
and maintains state

Identity – each object can be identified
and treated as a distinct entity

Behavior – state and services together
define the behavior of an object, or how
an object responds

OO Concepts..

Messages – through which a sender obj
conveys to a target obj a request

For requesting O1 must have – a handle
for O2, name of the op, info on ops that
O2 requires

General format O2.method(args)

OO Concepts..

Classes – a class is a stencil from which objects
are created; defines the structure and services.
A class has
An interface which defines which parts of an object

can be accessed from outside

Body that implements the operations

Instance variables to hold object state

Objects and classes are different; class is a
type, object is an instance

State and identity is of objects

Relationship among

objects

 An object has some capability – for other
services it interacts with other objects

 Some different ways for interaction:
1. Supplier object is global to client
2. Supplier obj is a parm to some op of the client
3. Supplier obj is part of the client obj
4. Supplier obj is locally declared in some op

 Relationship can be either aggregation (whole-
part relationship), or just client server
relationship

Inheritance

Inheritance is unique to OO and not there in
function-oriented languages/models

Inheritance by class B from class A is the facility
by which B implicitly gets the attributes and ops
of A as part of itself

Attributes and methods of A are reused by B

When B inherits from A, B is the subclass or
derived class and A is the base class or
superclass

Inheritance..

A subclass B generally has a derived part
(inherited from A) and an incremental
part (is new)

Hence, B needs to define only the
incremental part

Creates an “is-a” relationship – objects of
type B are also objects of type A

Inheritance…

Inheritance…

The inheritance relationship between classes
forms a class hierarchy

In models, hierarchy should represent the
natural relationships present in the problem
domain

In a hierarchy, all the common features can be
accumulated in a superclass

An existing class can be a specialization of an
existing general class – is also called
generalization-specialization relationships

Inheritance…

Strict inheritance – a subclass takes all
features of parent class

Only adds features to specialize it

Non-strict: when some of the features
have been redefined

Strict inheritance supports “is-a” cleanly
and has fewer side effects

Inheritance…

Single inheritance – a subclass inherits
from only one superclass

Class hierarchy is a tree

Multiple inheritance – a class inherits from
more than one class

Can cause runtime conflicts

Repeated inheritance - a class inherits from a
class but from two separate paths

Inheritance and

Polymorphism

Inheritance brings polymorphism, i.e. an object
can be of different types

An object of type B is also an object of type A

Hence an object has a static type and a dynamic
type

Implications on type checking

Also brings dynamic binding of operations which
allows writing of general code where operations do
different things depending on the type

Unified Modeling Language

(UML) and Modeling

UML is a graphical notation useful for OO
analysis and design

Allows representing various aspects of the
system

Various notations are used to build
different models for the system

OOAD methodologies use UML to
represent the models they create

Modeling

Modeling is used in many disciplines –
architecture, aircraft building, …

A model is a simplification of reality

“All models are wrong, some are useful”
A good model includes those elts that

have broad effect and omits minor elts

A model of a system is not the system!

Why build models?

Models help us visualize a system

Help specify the system structure

Gives us a template that can guide the
construction

Document the decisions taken and their
rationale

Modeling

Every complex system requires multiple
models, representing diff aspects

These models are related but can be
studied in isolation

Eg. Arch view, electrical view, plumbing
view of a building

Model can be structural, or behavioral

Views in an UML

A use case view

A design view

A process view

Implementation view

Deployment view

We will focus primarily on models for design –
class diagram, interaction diagram, etc.

Class Diagrams

Classes are the basic building blocks of an
OO system as classes are the
implementation units also

Class diagram is the central piece in an
OO design. It specifies
Classes in the system

Association between classes

Subtype, supertype relationship

Class Diagram…

Class itself represented as a box with
name, attributes, and methods

There are conventions for naming

If a class is an interface, this can be
specified by <<interface>> stereotype

Properties of attr/methods can be
specified by tags between { }

Class – example

Generalization-

Specialization

This relationship leads to class hierarchy

Can be captured in a class diagram

Arrows coming from the subclass to the
superclass with head touching super

Allows multiple subclasses

If specialization is done on the basis of some
discriminator, arrow can be labeled

Example – class hierarchy

Association/aggregation

Classes have other relationships

Association: when objects of a class need
services from other objects
Shown by a line joining classes

Multiplicity can be represented

Aggregation: when an object is composed of
other objects
Captures part-whole relationship

Shown with a diamond connecting classes

Example –

association/aggregation

Interaction Diagrams

Class diagram represent static structure of the
system (classes and their rel)

Do not model the behavior of system
Behavioral view – shows how objects interact

for performing actions (typically a use case)
Interaction is between objects, not classes
Interaction diagram in two styles

Collaboration diagram
Sequence diagram

Two are equivalent in power

Sequence Diagram

Objects participating in an interaction are shown
at the top

For each object a vertical bar represents its
lifeline

Message from an object to another, represented
as a labeled arrow

If message sent under some condition, it can be
specified in bracket

Time increases downwards, ordering of events
is captured

Example – sequence diag.

Collaboration diagram

Also shows how objects interact

Instead of timeline, this diagram looks
more like a state diagram

Ordering of messages captured by
numbering them

Is equivalent to sequence diagram in
modeling power

Example – collaboration

diag

Other Diagrams

Class diagram and interaction diagrams
most commonly used during design

There are other diagrams used to build
different types of models

Other Diagrams

Instead of objects/classes, can represent
components, packages, subsystems

These are useful for developing architecture
structures

UML is extensible – can model a new but similar
concept by using stereotypes (by adding
<<name>>)

Tagged values can be used to specify additional
properties, e.g. private, readonly..

Notes can be added

Other symbols

Design using UML

Many OOAD methodologies have been proposed

They provide some guidelines on the steps to be
performed

Basic goal is to identify classes, understand their
behavior, and relationships

Different UML models are used for this

Often UML is used, methodologies are not
followed strictly

Design using UML

Basic steps
Identify classes, attributes, and operations from use

cases
Define relationships between classes
Make dynamic models for key use cases and use

them to refine class diagrams
Make a functional model and use it to refine the

classes
Optimize and package

Class diagrams play the central role; class defn
gets refined as we proceed

Restaurant example: Initial

classes

Restaurant example: a seq

diag

Detailed Design

 HLD does not specify module logic; this is done during
detailed design

 One way to communicate the logic design: use natural
language

 Is imprecise and can lead to misunderstanding

 Other extreme is to use a formal language

 Generally a semi-formal language is used – has formal
outer structures but informal inside

Logic/Algorithm Design

Once the functional module (function or
methods in a class) are specified, the algo
to implement it is designed

Various techniques possible for designing
algorithm – in algos course

Stepwise refinements technique is useful
here

State Modeling of Classes

Dynamic model to represent behavior of
an individual object or a system

Shows the states of an object and
transitions between them

Helps understand the object – focus only
on the important logical states

State diagrams can be very useful for
automated and systematic testing

State diagram of a stack

Design Verification

Main objective: does the design
implement the requirements

Analysis for performance, efficiency, etc
may also be done

If formal languages used for design
representation, tools can help

Design reviews remain the most common
approach for verification

Metrics

Background

Basic purpose to provide a quantitative
evaluation of the design (so the final product
can be better)

Size is always a metric – after design it can be
more accurately estimated

Number of modules and estimated size of each is
one approach

Complexity is another metric of interest – will
discuss a few metrics

Network Metrics

Focus on structure chart; a good SC is
considered as one with each module having one
caller (reduces coupling)

The more the SC deviates from a tree, the more
impure it is
 Graph impurity = n – e – 1
n – nodes, e- edges in the graph

Impurity of 0 means tree; as this no increases,
the impurity increases

Stability Metrics

Stability tries to capture the impact of a change
on the design

Higher the stability, the better it is

Stability of a module – the number of
assumptions made by other modules about this
module

Depends on module interface, global data the
module uses

Are known after design

Information Flow Metrics

Complexity of a module is viewed as
depending on intra-module complexity

Intramodule estimated by module size
and the information flowing
Size in LOC

Inflow – info flowing in the module

Outflow – info flowing out of the module

Dc = size * (inflow * outflow)2

Information flow metrics…

(inflow * outflow) represents total
combination of inputs and outputs

Its square reps interconnection between
the modules

Size represents the internal complexity of
the module

Product represents the total complexity

Identifying error-prone

modules

Uses avg complexity of modules and std
dev to identify error prone and complex
modules:

Error prone: If Dc > avg complexity + std_dev

Complex: If avg complexity < Dc < avg + std
dev

Normal: Otherwise

Complexity metrics for OO

Weighted methods per class
Complexity of a class depends on no of

classes and their complexity

Suppose complexity of methods is c1, c2..;
by some functional complexity metric

WMC = Σ ci

Large WMC might mean that the class is
more fault-prone

OO Metrics…

Depth of Inheritance Tree
DIT of C is depth from the root class

Length of the path from root to C

DIT is significant in predicting fault
proneness

Number of Children
Immediate no of subclasses of C

Gives a sense of reuse

OO Metrics…

Coupling between classes

No of classes to which this class is coupled

Two classes are coupled if methods of one
use methods or attr of other

Can be determined from code

(There are indirect forms of coupling that
cannot be statically determined)

Metrics…

Response for a class
The total no of methods that can be invoked from

this class

Captures the strength of connections

Lack of cohesion in methods
Two methods form a cohesive pair if they access

some common vars (form a non-cohesive pair if no
common var)

LCOM is the number of method pairs that are non-
cohesive – the no of cohesive pairs

Metrics with detailed

design

When logic is known, internal complexity
metrics can be determined

We will cover all detailed design based
metrics along with code metrics

Summary

Design for a system is a plan for a solution –
want correct and modular

Cohesion and coupling key concepts to ensure
modularity

Structure charts and structured design
methodology can be used for function-oriented
design

UML can be used for OO design
Various complexity metrics exist to evaluate a

design complexity

