
 ADS@Unit-2[Balanced Trees]

 Page 1 of 27

Unit II : Balanced Trees : AVL Trees: Maximum Height of an AVL Tree, Insertions and

Deletions. 2-3 Trees: Insertion, Deletion, Priority Queues , Binary Heaps: Implementation of

insert and delete min, creating heap.

 ADS@Unit-2[Balanced Trees]

 Page 2 of 27

Tree: Tree is non-linear data structure that consists of root node and potentially many levels

of additional nodes that form a hierarchy.

 A tree can be empty with no nodes called the null or empty tree.

 A tree is a structure consisting of one node call the root and one or more subtrees.

 Descendant:- A node reachable by repeated proceeding form parent to child.

 Ancestor:- a node reachable by repeated proceeding from child to parent.

 Degree:- the number of sub-trees of a node, means the degree of an element (node) is

the number of children it has. The degree of a leaf node is always 0(zero).

 Siblings:- Nodes with the same parent.

 Height:- number of nodes which must be traversed from the root to the reach a leaf of

a tree.

Examples

Tree associated with a document

Binary Tree: - A binary tree is a tree data structure in which each node has at most two

children, which referred as the left and right child.

Full Binary Tree or Complete Trees:

A binary tree of height is ‘h’ and contains exactly “2
h
-1” elements is called full binary tree.

H=4 (levels+1 of root node)

nnumber elements= 2
h
-1=15

(Another definition of full binary tree is, each leaf is same

distance from the root)

Linked list representation of binary tree:

// Binary tree node structure

struct BinaryTreeNode

{

int data;

BinaryTreeNode *left, *right;

}*temp;

 ADS@Unit-2[Balanced Trees]

 Page 3 of 27

Operations on Binary Tree:

Create(), Insert(), Delete(), Size(), Inorder(), Preorder(), Postorder()

Binary Search Tree:

Binary search tree is also called ordered/sorted binary tree. Means Binary Search Tree is a

node based binary tree data structure but it should satisfies following properties

 Every element (node) has a key or value & no two elements have the same key or

value, therefore all keys are distinct.

 The left sub-tree of a node contains only nodes with key less than the root node’s key

value.

 The right sub-tree of a node contains only nodes with key greater than the root node’s

key value.

 The left and right sub-tree each must also be a binary search tree.

 A unique path exists from the root to every other node.

Binary search tree Example

Type Tree

Invented 1960

Invented by P.F. Windley, A.D. Booth, A.J.T. Colin, and

T.N. Hibbard

Time complexity in big O notation

 Average Worst case

Space O(n) O(n)

Search O(log n) O(n)

Insert O(log n) O(n)

Delete O(log n) O(n)

Balanced Tree

Balancing or self-balancing (Height balanced) tree is a binary search tree.

Balanced tree is any node based binary search tree that automatically keeps its height

(Maximum number of levels below the root) small in the face of arbitrary item insertion and

deletion.

Use of Balanced tree:

Tree structures support various basic dynamic set operations including search, minimum,

maximum, insert and deletion in the time proportional to the height of the tree.

Ideally, a tree will be balanced and the height will be “log N” where number of nodes in

the tree.

To ensure that the height of the tree is as small as possible for provide the best running time.

Examples of balancing tree

 ADS@Unit-2[Balanced Trees]

 Page 4 of 27

AVL Trees:

Introduction: An AVL tree (Adelson-Velskii and Landis' tree, named after the inventors) is

a self-balancing binary search tree, invented in 1962

Definition: An AVL tree is a binary search tree in which the balance factor of every node,

which is defined as the difference b/w the heights of the node’s left & right sub trees is either

0 or +1 or -1 .

Balance factor = ht of left sub tree – ht of right sub tree.

Where ht=height

Example:

 ADS@Unit-2[Balanced Trees]

 Page 5 of 27

Structure or pseudo code for avl tree:

struct node node *rotateright(node *);

{ int data; node *rotateleft(node *);

struct node *left,*right; node *RR(node *);

int ht; node *LL(node *);

}node; node *LR(node *);

node *RL(node *);

node *insert(node *,int); int height(node *);

node *Delete(node *,int); int BF(node *);

Inserting and Deleting on AVL Trees

Problem:

After insert/delete: load balance might be changed to +2 or -2 for certain nodes. _ re-balance

load after each step

Requirements: re-balancing must have O (log n) worst-case complexity

Solution: Apply certain “rotation” operations

AVL tree insertion:

After inserting a node, it is necessary to check each of the node's ancestors for consistency

with the rules of AVL. The balance factor is calculated as follows: balanceFactor = height

(left subtree) - height(right subtree). If insertions are performed serially, after each insertion,

at most one of the following cases needs to be resolved to restore the entire tree to the rules of

AVL.

Let the node that needs rebalancing be .

4 possible situations to insert in a tree

1. Insert into the left sub-tree of the left child

2. Insert into the right sub-tree of the right child

3. Insert into the left sub-tree of the right child

4. Insert into the right sub-tree of the left child

If an insertion of a new node makes an avl tree unbalanced, we transform the tree by a

rotation. There are 4-types of rotation we have.

 ADS@Unit-2[Balanced Trees]

 Page 6 of 27

 ADS@Unit-2[Balanced Trees]

 Page 7 of 27

 ADS@Unit-2[Balanced Trees]

 Page 8 of 27

 ADS@Unit-2[Balanced Trees]

 Page 9 of 27

 ADS@Unit-2[Balanced Trees]

 Page 10 of
27

 ADS@Unit-2[Balanced Trees]

 Page 11 of
27

 ADS@Unit-2[Balanced Trees]

 Page 12 of
27

 ADS@Unit-2[Balanced Trees]

 Page 13 of
27

 ADS@Unit-2[Balanced Trees]

 Page 14 of
27

Example of Insertion of 1, 2, 3, 4, 5, 0, 7, 6 into an AVL Tree

All insertions are right-right and so rotations are all single rotate from the right. All but two insertions require

re-balancing:

All insertions are right-left and so double rotations take place form left-right and right-to left

 ADS@Unit-2[Balanced Trees]

 Page 10 of 27

Another example. The insertion sequence is: 50, 25, 10, 5, 7, 3, 30, 20, 8, 15

 ADS@Unit-2[Balanced Trees]

Page 11 of 27

node * insert(node *T,int x)
{

if(T==NULL)

{

T=(node*)malloc(sizeof(node));

T->data=x;

T->left=NULL;

T->right=NULL;

}

else

if(x > T->data) // insert in right sub-tree

{

T->right=insert(T->right,x);

if(BF(T)==-2)

if(x>T->right->data)

T=RR(T);

else

T=RL(T);

}

else

if(x<T->data) // insert in left sub-tree
{

T->left=insert(T->left, x);

if(BF(T)==2)

if(x < T->left->data)

T=LL(T);

else

T=LR(T);

}

T->ht=height(T);

return(T);

}

int height(node *T)
{

int lh,rh;

if(T==NULL)

return(0);

if(T->left==NULL)

lh=0;

else

lh=1+T->left->ht;

if(T->right==NULL)

rh=0;

else

rh=1+T->right->ht;

if(lh>rh)

return(lh);

return(rh);

}

int BF(node *T)
{

int lh, rh;

if(T==NULL)

return(0);

if(T->left==NULL)

lh=0;

else

lh=1+T->left->ht;

if(T->right==NULL)

rh=0;

else

rh=1+T->right->ht;

return(lh-rh);

}

node * RR(node *T)
{

T=rotateleft(T);

return(T);

}

node * LL(node *T)
{

T=rotateright(T);

return(T);

}

node * LR(node *T)
{

T->left=rotateleft(T->left);

T=rotateright(T);

return(T);

}

node * RL(node *T)
{

T-

>right=rotateright(T-

>right);
T=rotateleft(T);

return(T);

}

node * rotateleft(node
*x)

{

node *y;

y=x->right;

x->right=y->left;

y->left=x;

x->ht=height(x);

y->ht=height(y);

return(y);

}

node * rotateright(node *x)
{

node *y;

y=x->left;

x->left=y->right;

y->right=x;

x->ht=height(x);

y->ht=height(y);

return(y);

}

 ADS@Unit-2[Balanced Trees]

Page 12 of 27

Search Operation in avl tree:

Search operation of avl tree is same as the search operation of binary search tree. Means

given element is checked with the root element,

 If the given element is match with the root element then return the value

 If the given element is less than the root element then the searching operation is

continued at left sub-tree of the tree.

 If the given element is greater than the root element then the searching operation is

continued at right sub-tree of the tree.

node *search(node *root, int key, node **parent) {

node *temp;

temp = root;

while (temp != NULL) {

if (temp->data == key) {

printf("\nThe %d Element is Present", temp->data);

return temp;

}

*parent = temp;

if (temp->data > key)

temp = temp->lchild;

else

temp = temp->rchild;

}

return NULL;

}

 ADS@Unit-2[Balanced Trees]

Page 13 of 27

Deletion of node in avl tree:

●Deletion:

■Case 1: if X is a leaf, delete X

■Case 2: if X has 1 child, use it to replace X

■Case 3: if X has 2 children, replace X with its inorder predecessor(and recursively delete it)

Algorithm:

Step 1: Search the node which is to be deleted.

If the node to be deleted is a leaf node then simply delete that node and make be null

If the node to be deleted is not a leaf-node, i.e., that node have one or two children

then that node must be swapped with its in order successor. Once the node is swapped we can

remove the required node.

Step: 2:- Now we have to traverse back up the path towards the root node checking balance

factor of every nod along that path.

Step 3:-If we encounter unbalancing in some sub tree than balance that sub tree using

appropriate single or double rotations.

Delete 55 (case 1)

Delete 50 (case 2)

 ADS@Unit-2[Balanced Trees]

Page 14 of 27

Delete 60 (case 3)

Delete 55 (case 3)

 ADS@Unit-2[Balanced Trees]

Page 15 of 27

Delete 50 (case 3)

 ADS@Unit-2[Balanced Trees]

Page 16 of 27

Delete 40 (case 3)

Delete 40 : Rebalancing

Delete 40: after rebalancing

 ADS@Unit-2[Balanced Trees]

Page 17 of 27

node * Delete(node *T,int x)
{ node *p;

if(T==NULL) { return NULL; }

else

if(x > T->data) // insert in right subtree

{

T->right=Delete(T->right,x);

if(BF(T)==2)

if(BF(T->left)>=0)

T=LL(T);

else

T=LR(T);

}

else

if(x<T->data) {

T->left=Delete(T->left,x);

if(BF(T)==-2)//Rebalance during windup

if(BF(T->right)<=0)

T=RR(T);

else

T=RL(T); }

Else {

//data to be deleted is found

if(T->right !=NULL)

{ //delete its inorder succesor

p=T->right;

while(p->left != NULL)

p=p->left;

T->data=p->data;

T->right=Delete(T->right,p->data);

if(BF(T)==2)//Rebalance during windup

if(BF(T->left)>=0)

T=LL(T);

else

T=LR(T);

}

else

return(T->left);

}

T->ht=height(T);

return(T);

}

AVL tree

Type Tree

Invented 1962

Invented by

G. M. (A)delson,
(V)elskii &
E. M.(L)andis

Time complexity in big O notation

 Average Worst case

Space O(n) O(n)

Search O(log n) O(log n)

Insert O(log n) O(log n)

Delete O(log n) O(log n)

 ADS@Unit-2[Balanced Trees]

Page 18 of 27

Red-Black Tree:

 ADS@Unit-2[Balanced Trees]

Page 19 of 27

 ADS@Unit-2[Balanced Trees]

Page 20 of 27

 ADS@Unit-2[Balanced Trees]

Page 21 of 27

 ADS@Unit-2[Balanced Trees]

Page 22 of 27

 ADS@Unit-2[Balanced Trees]

Page 23 of 27

 ADS@Unit-2[Balanced Trees]

Page 24 of 27

 ADS@Unit-2[Balanced Trees]

Page 25 of 27

B-Tree:

B-Tree is a self balancing search tree.

B-T ree is a tree data structure that keeps data sorted and allows searches, sequential access,

insertions and deletions in logarithmic time (O(log n)).

Properties of B-Tree:

 The root has at least one key.

 All leaves (external node) are at the same level.

 Keys are stored in non-decreasing order.

 A B-tree of order M is a tree then

 The root is either a leaf or has between 2 and m Childs.

 Non-root nodes have at least sub-trees.

Example:

 ADS@Unit-2[Balanced Trees]

Page 26 of 27

2-3-4 tree:

A B-tree of order 4 is known as a 2-3-4 tree.

A 2–3–4 tree (also called a 2–4 tree) is a self-balancing data structure that is commonly used

to implement dictionaries. The numbers mean a tree where every node with children (internal

node) has either two, three, or four child nodes:

 a 2-node has one data element, and if internal has two child nodes;

 a 3-node has two data elements, and if internal has three child nodes;

 a 4-node has three data elements, and if internal has four child nodes.

Properties

 Every node (leaf or internal) is a 2-node, 3-node or a 4-node, and holds one, two, or three

data elements, respectively.

 All leaves are at the same depth (the bottom level).

 All data is kept in sorted order.

 ADS@Unit-2[Balanced Trees]

Page 27 of 27

Example:

Insert 25

2-3-Tree:

A b-tree of order 3 is known as 2-3-tree.

A 2-3 tree is a tree (B-tree) in which each internal node (non leaf) has either 2 or 3 children

and all leaves are at the same level.

Properties of 2-3-tree:

 Every non-leaf is a 2-node or a 3-node. A 2-node contains one data item and has two

children. A 3-node contains two data items and has 3 children.

 All leaves are at the same level (the bottom level)

 All data is kept in sorted order

 Every leaf node will contain 1 or 2 fields.

Example:

 ADS@Unit-2[Balanced Trees]

 Page 20 of 27

Operations on a 2-3 Tree:

The lookup operation (Search)

Recall that the lookup operation needs to determine whether key value k is in a 2-3 tree T.

The lookup operation for a 2-3 tree is very similar to the lookup operation for a binary-search

tree. There are 2 base cases:

1. T is empty: return false

2. T is a leaf node: return true iff the key value in T is k

And there are 3 recursive cases:

1. k <= T.leftMax: look up k in T's left subtree

2. T.leftMax < k <= T.middleMax: look up k in T's middle subtree

3. T.middleMax < k: look up k in T's right subtree

Constructing 2-3-tree:

 ADS@Unit-2[Balanced Trees]

 Page 21 of 27

 ADS@Unit-2[Balanced Trees]

m

Page 22 of 27

 ADS@Unit-2[Balanced Trees]

 Page 23 of 27

 ADS@Unit-2[Balanced Trees]

 Page 24 of 27

Inserting Items

 ADS@Unit-2[Balanced Trees]

 Page 25 of 27

The goal of the insert operation is to insert key k into tree T, maintaining T's 2-3 tree

properties. Special cases are required for empty trees and for trees with just a single (leaf)

node.

How do we insert32?

Final Result

Deleting Items

After deleting an element in the tree (2-3-tree), the resulting tree must be 2-3-tree, means it

must the resulting tree must satisfy all the properties of B-tree of order 3.

Deleting key k is similar to inserting: there is a special case when T is just a single (leaf) node

containing k (T is made empty); otherwise, the parent of the node to be deleted is found, then

the tree is fixed up if necessary so that it is still a 2-3 tree.

Consider following example for deleting nodes form 2-3-tree.

Deleting70:

Delete 100

 ADS@Unit-2[Balanced Trees]

 Page 26 of 27

Delete 80:

2-3 Trees
• These are not binary search trees

• Because they are not necessarily binary

• They maintain all leaves at same depth

• But number of children can vary

• 2-3 tree: 2 or 3 children

• 2-3-4 tree: 2, 3, or 4 children

• B-tree: B/2 to B children (roughly)

2-3 Trees
• 2-3 tree named for # of possible children of each node

• Each node designated as either 2-node or 3-node

• A 2-node is the same as a binary search tree node

 ADS@Unit-2[Balanced Trees]

 Page 27 of 27

• A 3-node contains two data fields, first < second,

• and references to three children:

• First holds values < first data field

• Second holds values between the two data fields

• Third holds values > second data field

• All of the leaves are at the (same) lowest level

Searching a 2-3 Tree
1. if r is null, return null (not in tree)

2. if r is a 2-node

3. if item equals data1, return data1

4. if item < data1, search left subtree

5. else search right subtree

6. else // r is a 3-node

7. if item < data1, search left subtree

8. if item = data1, return data1

9. if item < data2, search middle subtree

10. if item = data2, return data 2

11. else search right subtree

Inserting into a 2-3 Tree (3)

 ADS@Unit-2[Balanced Trees]

 Page 28 of 27

• Inserting into 3-node with 3-node parent:

• “Overload” parent, and repeat process higher up:

Insert Algorithm for 2-3 Tree

1. if r is null, return new 2-node with item as data

2. if item matches r.data1 or r.data2, return false

3. if r is a leaf

4. if r is a 2-node, expand to 3-node and return it

5. split into two 2-nodes and pass them back up

6. else

7. recursively insert into appropriate child tree

8. if new parent passed back up

9. if will be tree root, create and use new 2-node

 ADS@Unit-2[Balanced Trees]

 Page 29 of 27

10. else recursively insert parent in r

11. return true

2-3 Tree Performance

• If height is h, number of nodes in range 2h-1 to 3h-1

• height in terms of # nodes n in range log2 n to log3 n

• This is O(log n), since log base affects by constant factor

• So all operations are O(log n)

Removal from a 2-3 Tree
• Removing from a 2-3 tree is the reverse of insertion

• If the item in a leaf, simply delete it

• If not in a leaf

• Swap it with its inorder predecessor in a leaf

• Then delete it from the leaf node

Redistribute nodes between siblings and parent

 ADS@Unit-2[Balanced Trees]

 Page 30 of 27

Figure 5.25: Deletion in 2-3 trees: An Example

 ADS@Unit-2[Balanced Trees]

 Page 31 of 27

 ADS@Unit-2[Balanced Trees]

 Page 32 of 27

 ADS@Unit-2[Balanced Trees]

 Page 33 of 27

 ADS@Unit-2[Balanced Trees]

 Page 34 of 27

 ADS@Unit-2[Balanced Trees]

 Page 35 of 27

 ADS@Unit-2[Balanced Trees]

 Page 36 of 27

Priority Queue

In normal queue data structure, insertion is performed at the end of the queue and deletion is performed based on the

FIFO principle. This queue implementation may not be suitable for all situations.

Consider a networking application where server has to respond for requests from multiple clients using queue data

structure. Assume four requests arrived to the queue in the order of R1 requires 20 units of time, R2 requires 2 units of

time, R3 requires 10 units of time and R4 requires 5 units of time. Queue is as follows...

 ADS@Unit-2[Balanced Trees]

 Page 37 of 27

Now, check waiting time for each request to be complete.

1. R1 : 20 units of time

2. R2 : 22 units of time (R2 must wait till R1 complete - 20 units and R2 itself requeres 2 units. Total 22

units)

3. R3 : 32 units of time (R3 must wait till R2 complete - 22 units and R3 itself requeres 10 units. Total 32

units)

4. R4 : 37 units of time (R4 must wait till R3 complete - 35 units and R4 itself requeres 5 units. Total 37

units)

Here, average waiting time for all requests (R1, R2, R3 and R4) is (20+22+32+37)/4 ≈ 27 units of time.

That means, if we use a normal queue data structure to serve these requests the average waiting time for each request is

27 units of time.

Now, consider another way of serving these requests. If we serve according to their required amount of time. That

means, first we serve R2 which has minimum time required (2) then serve R4 which has second minimum time

required (5) then serve R3 which has third minimum time required (10) and finnaly R1 which has maximum time

required (20).

Now, check waiting time for each request to be complete.

1. R2 : 2 units of time

2. R4 : 7 units of time (R4 must wait till R2 complete 2 units and R4 itself requeres 5 units. Total 7 units)

3. R3 : 17 units of time (R3 must wait till R4 complete 7 units and R3 itself requeres 10 units. Total 17

units)

4. R1 : 37 units of time (R1 must wait till R3 complete 17 units and R1 itself requeres 20 units. Total 37

units)

Here, average waiting time for all requests (R1, R2, R3 and R4) is (2+7+17+37)/4 ≈ 15 units of time.

From above two situations, it is very clear that, by using second method server can complete all four requests with very

less time compared to the first method. This is what exactly done by the priority queue.

Priority queue is a variant of queue data structure in which insertion is performed in the order of arrival and

deletion is performed based on the priority.

There are two types of priority queues they are as follows...

1. Max Priority Queue

2. Min Priority Queue

1. Max Priority Queue

In max priority queue, elements are inserted in the order in which they arrive the queue and always maximum value is

removed first from the queue. For example assume that we insert in order 8, 3, 2, 5 and they are removed in the order 8,

5, 3, 2.

The following are the operations performed in a Max priority queue...

1. isEmpty() - Check whether queue is Empty.

2. insert() - Inserts a new value into the queue.

3. findMax() - Find maximum value in the queue.

4. remove() - Delete maximum value from the queue.

Max Priority Queue Representations

 ADS@Unit-2[Balanced Trees]

 Page 38 of 27

There are 6 representations of max priority queue.

1. Using an Unordered Array (Dynamic Array)

2. Using an Unordered Array (Dynamic Array) with the index of the maximum value

3. Using an Array (Dynamic Array) in Decreasing Order

4. Using an Array (Dynamic Array) in Increasing Order

5. Using Linked List in Increasing Order

6. Using Unordered Linked List with reference to node with the maximum value

#1. Using an Unordered Array (Dynamic Array)

In this representation elements are inserted according to their arrival order and maximum element is deleted first from

max priority queue.

For example, assume that elements are inserted in the order of 8, 2, 3 and 5. And they are removed in the order 8, 5, 3

and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity that means constant time.

insert() - New element is added at the end of the queue. This operation requires O(1) time complexity that means

constant time.

findMax() - To find maximum element in the queue, we need to compare with all the elements in the queue. This

operation requires O(n) time complexity.

remove() - To remove an element from the queue first we need to perform findMax() which requires O(n) and

removal of particular element requires constant time O(1). This operation requires O(n) time complexity.

#2. Using an Unordered Array (Dynamic Array) with the index of the maximum value

In this representation elements are inserted according to their arrival order and maximum element is deleted first from

max priority queue.

For example, assume that elements are inserted in the order of 8, 2, 3 and 5. And they are removed in the order 8, 5, 3

and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity that means constant time.

 ADS@Unit-2[Balanced Trees]

 Page 39 of 27

insert() - New element is added at the end of the queue with O(1) and for each insertion we need to update maxIndex

with O(1). This operation requires O(1) time complexity that means constant time.

findMax() - To find maximum element in the queue is very simple as maxIndex has maximum element index. This

operation requires O(1) time complexity.

remove() - To remove an element from the queue first we need to perform findMax() which requires O(1) , removal of

particular element requires constant time O(1) and update maxIndex value which requires O(n). This operation

requires O(n) time complexity.

#3. Using an Array (Dynamic Array) in Decreasing Order

In this representation elements are inserted according to their value in decreasing order and maximum element is

deleted first from max priority queue.

For example, assume that elements are inserted in the order of 8, 5, 3 and 2. And they are removed in the order 8, 5, 3

and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity that means constant time.

insert() - New element is added at a particular position in the decreasing order into the queue with O(n), because we

need to shift existing elements inorder to insert new element in decreasing order. This operation requires O(n) time

complexity.

findMax() - To find maximum element in the queue is very simple as maximum element is at the beginning of the

queue. This operation requires O(1) time complexity.

remove() - To remove an element from the queue first we need to perform findMax() which requires O(1), removal of

particular element requires constant time O(1) and rearrange remaining elements which requires O(n). This operation

requires O(n) time complexity.

#4. Using an Array (Dynamic Array) in Increasing Order

In this representation elements are inserted according to their value in increasing order and maximum element is

deleted first from max priority queue.

For example, assume that elements are inserted in the order of 2, 3, 5 and 8. And they are removed in the order 8, 5, 3

and 2.

 ADS@Unit-2[Balanced Trees]

 Page 40 of 27

Now, let us analyse each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity that means constant time.

insert() - New element is added at a particular position in the increasing order into the queue with O(n), because we

need to shift existing elements inorder to insert new element in increasing order. This operation requires O(n) time

complexity.

findMax() - To find maximum element in the queue is very simple as maximum element is at the end of the queue.

This operation requires O(1) time complexity.

remove() - To remove an element from the queue first we need to perform findMax() which requires O(1), removal of

particular element requires constant time O(1) and rearrange remaining elements which requires O(n). This operation

requires O(n) time complexity.

#5. Using Linked List in Increasing Order

In this representation, we use a single linked list to represent max priority queue. In this representation elements are

inserted according to their value in increasing order and node with maximum value is deleted first from max priority

queue.

For example, assume that elements are inserted in the order of 2, 3, 5 and 8. And they are removed in the order 8, 5, 3

and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'head == NULL' queue is Empty. This operation requires O(1) time complexity that means constant

time.

insert() - New element is added at a particular position in the increasing order into the queue with O(n), because we

need to the position where new element has to be inserted. This operation requires O(n) time complexity.

findMax() - To find maximum element in the queue is very simple as maximum element is at the end of the queue.

This operation requires O(1) time complexity.

remove() - To remove an element from the queue is simply removing the last node in the queue which requires O(1).

This operation requires O(1) time complexity.

#6. Using Unordered Linked List with reference to node with the maximum value

In this representation, we use a single linked list to represent max priority queue. Always we maitain a reference

(maxValue) to the node with maximum value. In this representation elements are inserted according to their arrival and

node with maximum value is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 2, 8, 3 and 5. And they are removed in the order 8, 5, 3

and 2.

 ADS@Unit-2[Balanced Trees]

 Page 41 of 27

Now, let us analyse each operation according to this representation...

isEmpty() - If 'head == NULL' queue is Empty. This operation requires O(1) time complexity that means constant

time.

insert() - New element is added at end the queue with O(1) and update maxValue reference with O(1). This operation

requires O(1) time complexity.

findMax() - To find maximum element in the queue is very simple as maxValue is referenced to the node with

maximum value in the queue. This operation requires O(1) time complexity.

remove() - To remove an element from the queue is deleting the node which referenced by maxValue which

requires O(1) and update maxValue reference to new node with maximum value in the queue which requires O(n) time

complexity. This operation requires O(n) time complexity.

2. Min Priority Queue Representations

Min Priority Queue is similar to max priority queue except removing maximum element first, we remove minimum

element first in min priority queue.

The following operations are performed in Min Priority Queue...

1. isEmpty() - Check whether queue is Empty.

2. insert() - Inserts a new value into the queue.

3. findMin() - Find minimum value in the queue.

4. remove() - Delete minimum value from the queue.

Min priority queue is also has same representations as Max priority queue with minimum value removal.

Heap Data Structure

Heap data structure is a specialized binary tree based data structure. Heap is a binary tree with special characteristics. In

a heap data structure, nodes are arranged based on thier value. A heap data structure, some time called as Binary Heap.

There are two types of heap data structures and they are as follows...

1. Max Heap

2. Min Heap

Every heap data structure has the following properties...

Property #1 (Ordering): Nodes must be arranged in a order according to values based on Max heap or Min heap.

Property #2 (Structural): All levels in a heap must full, except last level and nodes must be filled from left to right

strictly.

http://btechsmartclass.com/DS/U3_T5.html
http://btechsmartclass.com/DS/U3_T5.html

 ADS@Unit-2[Balanced Trees]

 Page 42 of 27

Max Heap

Max heap data structure is a specialized full binary tree data structure except last leaf node can be alone. In a max heap

nodes are arranged based on node value.

Max heap is defined as follows...

Max heap is a specialized full binary tree in which every parent node contains greater or equal value than its

child nodes. And last leaf node can be alone.

Example

Above tree is satisfying both Ordering property and Structural property according to the Max Heap data structure.

Operations on Max Heap

The following operations are performed on a Max heap data structure...

1. Finding Maximum

2. Insertion

3. Deletion

Finding Maximum Value Operation in Max Heap

Finding the node which has maximum value in a max heap is very simple. In max heap, the root node has the

maximum value than all other nodes in the max heap. So, directly we can display root node value as maximum value in

max heap.

Insertion Operation in Max Heap

Insertion Operation in max heap is performed as follows...

 Step 1: Insert the newNode as last leaf from left to right.

 Step 2: Compare newNode value with its Parent node.

 Step 3: If newNode value is greater than its parent, then swap both of them.

 Step 4: Repeat step 2 and step 3 until newNode value is less than its parent nede (or) newNode reached to root.

Example
Consider the above max heap. Insert a new node with value 85.

 Step 1: Insert the newNode with value 85 as last leaf from left to right. That means newNode is added as a

right child of node with value 75. After adding max heap is as follows...

 ADS@Unit-2[Balanced Trees]

 Page 43 of 27

 Step 2: Compare newNode value (85) with its Parent node value (75). That means 85 > 75

 Step 3: Here new Node value (85) is greater than its parent value (75), then swap both of them. After

wrapping, max heap is as follows...

 ADS@Unit-2[Balanced Trees]

 Page 44 of 27

 Step 4: Now, again compare newNode value (85) with its parent nede value (89).

Here, newNode value (85) is smaller than its parent node value (89). So, we stop insertion process. Finally,

max heap after insetion of a new node with value 85 is as follows...

Deletion Operation in Max Heap

In a max heap, deleting last node is very simple as it is not disturbing max heap properties.

Deleting root node from a max heap is title difficult as it disturbing the max heap properties. We use the following

steps to delete root node from a max heap...

 Step 1: Swap the root node with last node in max heap

 Step 2: Delete last node.

 Step 3: Now, compare root value with its left child value.

 Step 4: If root value is smaller than its left child, then compare left child with its right sibling. Else

goto Step 6

 Step 5: If left child value is larger than its right sibling, then swap root with left child. otherwise swap

root with its right child.

 Step 6: If root value is larger than its left child, then compare root value with its right child value.

 Step 7: If root value is smaller than its right child, then swap root with rith child. otherwise stop the

process.

 Step 8: Repeat the same until root node is fixed at its exact position.

Example
Consider the above max heap. Delete root node (90) from the max heap.

 Step 1: Swap the root node (90) with last node 75 in max heap After swapping max heap is as follows...

 ADS@Unit-2[Balanced Trees]

 Page 45 of 27

 Step 2: Delete last node. Here node with value 90. After deleting node with value 90 from heap, max heap is

as follows...

 Step 3: Compare root node (75) with its left child (89).

Here, root value (75) is smaller than its left child value (89). So, compare left child (89) with its right sibling

(70).

 ADS@Unit-2[Balanced Trees]

 Page 46 of 27

 Step 4: Here, left child value (89) is larger than its right sibling (70), So, swap root (75) with left child (89).

 Step 5: Now, again compare 75 with its left child (36).

Here, node with value 75 is larger than its left child. So, we compare node with value 75 is compared with its

right child 85.

 ADS@Unit-2[Balanced Trees]

 Page 47 of 27

 Step 6: Here, node with value 75 is smaller than its right child (85). So, we swap both of them. After

swapping max heap is as follows...

 Step 7: Now, compare node with value 75 with its left child (15).

Here, node with value 75 is larger than its left child (15) and it does not have right child. So we stop the

process.

Finally, max heap after deleting root node (90) is as follows...

 ADS@Unit-2[Balanced Trees]

 Page 48 of 27

	fig:twothreedel
	7834

