COMPUTABILITY THEORY

After going through this chapter, you should be able to understand :

. Chomsky hierarchy of Languages
Linear Bounded Automata and CSLs
LR (0) Grammar
Decidability of problems
UTMand PCP
P and NP problems

8.1 CHOMSKY HIERARCHY OF LANGUAGES

Chomsky has classified all grammars in four categories ( type 0 to type 3 ) based on the right
hand side forms of the productions.

{a) Type O

These types of grammars are also known as phrase structured grammars, and RHS ofthese are
fiee from any restriction. All grammars are type 0 grammars.

Example : productions of types AS—» aS, 'SB —» b, —»¢ are type 0 production.
(b) Type 1

We apply some restrictions on type O grammars and these restricted grammars are known as
type 1 or context - sensitive grammars (CSGs). Suppose atype 0 production yas — yB5

and the production & — # is restricted such that | e{<| fland S#<. Then these type of
productions is known as type 1 production. Ifall productions of a grammar are oftype 1 production,
then grammar is known as type 1 grammar, The language generated by a context - sensitive
grammar is called context - sensitive language (CSL).
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In CSG, there is left context or right context or both. For example, consider the production
adB-> caf . Inthis, o isleftcontextand g isright contextofAand A is the varigble which is
replaced. ‘

The production oftype § — < is allowed intype 1 if g isin1(G), but 8 should not appear on
right hand side of any production.

Example : productions § — 4B,8 — €,4 - ¢ aretype 1 productions, but the production
oftype A — Sc isnotallowed . Almost every language can be thought as CSL.

Note : Ifleft or right context is missing then we assume that € is the context.

{c) Type 2

We apply some more restrictions on RHS of type 1 productions and these productions are
known as type 2 or context - free productions. A production of the form a— 8, where

a,Be(V UE)* is known as type 2 production. A grammar whose productions are type 2
production is known as type 2 or context - free grammar (CFG) and the languages generated by
this type of grammars is called context - free languages (CFL).

Example : §—S§+8,5->S*S, §-»id are type 2 productions.

(d) Type 3

This is the most restricted type. Productions of types 4 —» g or 4 —> aB|Ba ,where 4, BeV

and a € £ are known as type 3 or regular grammar productions. A production oftype s > e is
alsoallowed, if eisin generated language.

Example : productions §—>aS, S— ¢ are type 3 productions.
Left - linear production : A productionoftype 4 -» Ba iscalled left - linear production.
Right-linear production : Aproductionoftype 4— aB is called right - linear production.

Aleft - linear or right - linear grammar is called regular grammar. The language generated bya
regular grammar is known as regular language.
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8.2 LINEAR BOUNDED AUTOMATA

The Linear Bounded Automata (LBA) is a model which was originally developed asa model for
actual computers rather than mode for computational process. A linear bounded automaton isa
- restricted form of a non deterministic Tuting machine.

Alinear bounded automaton is a multitrack Turing machine which has only one tape and thistape
is exactly of same length as that of input.

The linear bounded automaton (LBA) accepts the string in the similar manner as that of Turing
machitie does. For LBA halting means accepting. In LBA computation is restricted fo an area
bounded by length of the input. This is very much similarto programming environment where size
of variable is bounded by its data type.
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FIGURE : Linear bounded automaton

The LBA is powerful than NPDA but less powerful than Turing machine. The input is placed on
the input tape with beginning and end markers. In the above figure the input is bounded
by <and>. ;

A linear bounded automata can be formally defmed as:

LBA is 7 - tuple on deterministic Turing machine with
M=(Q,%, T, 8, qo» daccen> Groject) having
. Two extra symbols of left end marker and right end marker which are not elementsof 1.
. The input lies between these end markers.
. The TM cannot replace < or > with anything else nor move the tape head left of <or
rightof >.
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8.3 CONTEXT SENSITIVE LANGUAGES ( CSLs )

The context sensifive languages are the languages which are accepted by linear bounded antomata.
These type of languages are defined by context sensitive grammar. In this grammar more than
one terminal or non terminal symbol may appear on the left hand side of the production rule.
Along with it, the context sensitive grammar follows following rules:

i. Thenumber of symbols on the left hand side must not exceed number of symbols on the
right hand side.

ii. Theruleoftheform 4 —e isnotallowed unless A is a start symbol. It does not occur
on the right hand side of any rule.

The classic example of context sensitive languageis Z = {a" 5" ¢" | n > 1} . Thecontextsensitive
grammar can be written as :

aBC
SABC
AC
AB
BC

aa

ab

bb

be

ce

bC
cC

N R AR R

Now to derive the string aabbce we will start from start symbol :
S mleS - SABC
SABC nleS —» aBC
aBCABC rule CA —» AC
aBACBC ) ruleCB — BC
aBABCC rileBA > AB
aABBCC ruleaA — aa
agBBCC ruleaB -»  ab
aabBCC rulebB — bb
aabbCC rulebC —» be
aabbeC ralecC — ce
aabbee
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Note : The language " 5" ¢" where > | isrepresented by context sensitive grammar but it
cannot be represented by context free grammar,

Every context sensitive language can be represented by LBA.

8.4 LR (k) GRAMMARS

Before going to the topic of LR (k) grammar, let us discuss about some concepts which will be
helpful understanding it.

In the unit of context free grammars you have seen that to check whether a particular string is
accepted by a particular grammar or not we try to derive that sentence using rightmost derivation
or lefimost derivation. If that string is derived we say that it is a valid string.

Example :

Bes BT
T>T*F| F
F>id| (E)

Suppose we want to check validity of a string id +id * id . Its rightmost derivation is
E = E+T
E+T*F
E+T*id
E+ F*id
E +id*id
T+id *id
F+id*id
id + id *id

LU Uil

FIGURE(a) : Rightmost Derivation of id + id * id

Since this sentence is derivabie using the given grammar. Itis a valid string. Here we have checked
the validity of string using process known as derivation.
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Inreduction process we have seen that we repeat the process of substitution until we get starting
state. But some times several choices may be available for replacement. In this case we have to
backtrack and try some other substring . For certain grammars it is possible to carry out the
process in deterministic. (i. e., having only one choice at each time ). LR grammars form one
such subclass of context free grammars. Depending on the number of ook ahead symbolized to
determine whether a substring must be replaced by a non terminal or not, they are classified as
LR(0), LR(1).... and in general LR(k) gramnmars.

LR(k) stands for left to right scanning of input string using rightmost derivation in reverse
order (we say reverse order because we use reduction which is reverse of derivation ) using
look ahead of k symbols.

8.4.1 LR(0) Grammar

LR(0) stands for left to right scanning of input string using rightmost derivation in reverse order
using 0 look ahead symbols,

Before defining LR(0) grammars, let us know about few terms.

Prefix Property ; Alanguage L is said to have prefix property if whenever w in L, no proper
prefix of wis in L. By introducing marker symbol we can convert any DCFL to DCFL with prefix
property. Hence L$ = { w$ |w e L } isa DCFL with prefix property whenever wis inL.

Example : Consider a language L= { cat, cart, bat, art, car } . Here, we can see that sentence
cartis in L and its one of the prefixes car is also is in L. Hence, it is not satisfying property. But
L$ ={cat$,cart$, bat$ art§,car$ }

Here, cart $ is in L$ but its prefix cart or car are not present in L$. Similarly no proper prefix is
present inL$. Hence, it is satisfying prefix property.

Note : LR(0) grammar generates DCFL and every DCFL with prefix property has a LR(0)
grammar.

LR ltems

An item for aCFG is a production with dot any where in right side including beginning orend. In
case of ¢ production, suppose 4 — € 4—»>. isanitem.
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Computing Valid Item Sets

The mainideahere is to construct from a given grammar a deterministic finite automata to recognize
viable prefixes. We group items together into sets which give to states of DFA. The items may be
viewed as states of NFA and grouped items may be viewed as states of DFA obtained using
subset construction algorithm.

To compute valid set of items we use two operations goto and closure.
Closure Operation

It Iis a set of items for a granmmar G, then closure (1) is the set of items constructed from I by two
rules. :
1. Initially, every item1is added to closure (1)
2. ¥ 4> Bf isinclosure (Y and g § is productionthenadd item g § toLifitis
not already there. We apply this rule until no more new items can be added to closure (I).

Example @ For the grammar,

§ - 8
S ->» cdd
4 — a

If$ — § issetofoneitem in state [then closure of Tis,
L 8§ > s
S — 4D

The first item is added usingrule 1and § ~» .cAd is added using rule 2. Because '. 'is

followed by nonterminal S we add items having SinLHS.In § — .cdd '.'isfollowed by
terminal so no new item is added.

Goto Function : Itis written as goto (I, X) where Lis set of iterns and X is grammar symbol.

If 4> . X3 is msome item set L then goto (1, X)) will be closure of set of all item 4 — a.X.4.
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FIGURE(a) : DFA whose States are the Sets of Valid ltems

Definition of LR(0) Grammar : We say G is an LR (0) grammar if,

1. ltsstart symbol does not appear on the right hand side of any production and

2. Forevery viable prefix y of G whenever 4 — « is a complete item valid for y , thenno
other complete item nor any item with terminal to the right of the dot is valid for 7 .

Condition 1 : For a grammar to be LR(0) it should satisfy both the conditions. The first

condition can be made to satisfy by all grammars by introduction of anew production §'-> § is

known augmented gramimat.

Condition 2 : For the DFA shown in Figure(a), the second condition is also satisfied because

inthe item sets I, 1, and J; each containinga complete itemn, there are no other complete items

nor any other conflict.

Example : Consider the DFA given in figure(b).

FIGURE(b) : DFAfor the given Grammar
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Each problem P is a pair consisting of a set and a question, where the question can be applied to
each element in the set. The set is called the domain of the problem, and its elements are called
the instances of the problem.

Example :

Domain = { All regular languages over some alphabet 5 }
Instance : L={w:wisawordover y endingin abb},
Question : Is union of two regular languages regular ?

851 Decidable and Undecidable Problems

A problem is said to be decidable if
1. Ttslanguageis reciusive, or
2. Ithas solution

Other problems which do not satisfy the above are undecidable. We restrict the answer of
decidable problems to " YES" or "NO" . If there is some algorithm exists for the problem, then
outcome of the algorithm is either "YES" or "NO" but not both. Restricting the answers to only
"YES" or "NO™ we may not be able to cover the whole problems, still we can covera lotof
problems. One question here. Why weare restricting our answers to only "YES" or "NO"? The
answer is very simple ; we want the answers as simple as possible.

Now, we say " If for a problem, there exists an algorithm which tells that the answer is either
"YES" or "NO" then problem is decidable."

; If for a problem both the answers are possible ; some times "YES" and sometimes "NO",
then problem is undecidable.

8.5.2 Decidable Problems for FA, Regular Grammars and Regular Languages

Some decidable problems are mentioned below :

1. Does FA acceptregular language ?

2, Isthe power of NFA and DFA same ?

3. I, and L, are two regular languages. Are these closed under following :
(@  Union
()  Concatenation
(¢)  Intersection
(d)  Complement
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6. ‘We have following co - theorem based on above discussion for recursive enumerable and
recursive languages.

LetLand T aretwo languages, where T the complement of L, then one of the following
istrue: s

(2) Both L.and 7 arerecursive languages,

(b) Neither Lnor T isrecursive languages,

(¢) If L is recursive enumerable but not recursive, then 7 isnotrecursive enumerable and
vice versa. :

Undecidable Problems about Turing Machines

In this section, we will first discuss about halting problem in general and then about ™.
Halting Problem (HP)
The halting problem is a decision problem which is informally stated as follows:

"Givena description of an algorithm and a description of ifs initial arguments, determine whether
the algorithm, when exccuted with these arguments, ever halts. The alternative is thata given
algorithm runs forever without halting.”

Alan Turing proved in 1936 that there is no general method or algorithm which can solve the
halting problem for all possible inputs. An algorithm may contain loops which may be infinite or
finite in length depending on the inputand behaviour of the algorithm. The amount of work done
in an algorithm usually depends on the input size. Algorithms may consist of various number of
loops, nested or in sequence. The HP asks the question :

Given aprogram and an input to the program, determine if the program will eventually stop when
itis given that input ?

One thing we can do here to find the solution of HP. Let the program run with the given input and
if the program stops and we conclude that problem is solved. But, ifthe program doesn't stop in
areasonable amount of time, we can not conclude that it won't stop. The questionis: " how long
we can wait .... 7" . The waiting time may be long enough to exhaust whole life. So, we can not
take it as easier as it seems to be. We want specific answer, either "YES" or " Q", and hence
some algorithm to decide the answer.
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Now, we analyse the following :
1. If H outputs "YES" and says that Q halts then Q itself would loop ( that's how we
constructed it ),
2. IfHoutputs "NO" and says that Q loops then Q outputs "YES” and will halts.
Since, in either case H gives the wrong answer for Q, Therefore, H cannot work inall cases
and hence can't answer right for all the inputs. This contradicts our assumption made earlier for
HP Hence, HP is undecidable.

Theorem ; HP of TM is undecidable. v
Proof : HP of TM means to decide whether or not a TM halts for some input w. We canprove
this following the similar steps discussed in above theorem.

8.6 UNIVERSAL TURING MACHINE '

The Church - Turing thesis conjectured that anything that can be done on any existing digital
computer can also be done by a TM. To prove this conjecture. A. M. Turing wasable to construct
asingle TM which s the theoretical analogue of a general purpose digital computer. This machine
is called a Universal Turing Machine (UTM). He showed thatthe UTM is capable of initiating
the operation of any other TM, that is, it is a reprogrammable TM. We can define thismachine in
more formal way as follows :

Definition : A Universal Turing Machine ( denoted as UTM) is a TM that can take as inputan
atbitrary TM 7, with anarbitrary input for 7, and then perform the executionof 7, onitsinput.

What Turing thus showed that a single TM can acts like a general purpose computer that stores
aprogram and its data in memory and then executes the program. We can describe UTMasa3

-tape TM where the description of TM, T, and itsinput string x € 4 * are stored initially on the
firsttape, 1, . The second tape, ¢, used to hold the simulated tape of T, , using the same format
as used for describing the TM, 7, . The third tape,, £, holds the state of T,

!
1 Ta x l

Description of T with s inpurx

Contro} g §

Unit el i
nEUTM g
“Tape conteats of Ta

Seatenf Ta
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Now, suppose that a Turing machine, T, , is consisting of a finite number of configurations,

denoted by, ¢, ¢, €505 €, and let &, G Cy,erns €, tepresent the encoding of them. Then, we

can define the encoding of 7, as follows : .
YO, RE BGH

Here, * and # are used only as separators, and cannot appear elsewhere. We use a pair of *'s fo

enclose the encoding of each configuration of TM, T,,.

The case where 8(s,q) is undefined can be encoded as follows :

#50G 0B #
where the symbols 5 , @ and F stand for the encoding of symbols, s, and B  Blank character),
respectively. ;

Working of UTM

Given a description of a TM, 7, and its inputs representation on the UTM tape, #, and the

starting symbol on tape , ¢,, the UTM starts executing the quintuples of the encoded TM as

follows :

1. The UTM gets the current state from tape, ¢, and the current input syrabol from tape ¢, .

2. then, it matches the current state - symbol pair to the state symbol pairs in the program listed
ontape, f,.

. ifno match occurs, the UTM halts, otherwise it copies the next state into the current state
cell of tape, ,, and perform the corresponding write and move operations on tape, #, .
ifthe current state on tape, 7 is the halt state, then the UTM halts, otherwise the UTM goes
back to step 2. :

8.7 POST'S CORRESPONDENCE PROBLEM (PCP)

Post's correspondence problem is a combinatorial problem formulated by Emil Post in 1946.
This problem has many applications in the field theory of formal languages.

Definition :

A correspondence system P is a finite set of ordered pairs of nonempty strings over some alphabet.
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Hete, u; =b, u, =a, uy; =abe, vy=ca, v,=ab, vy=c.

We haveasolution w=u, u, = v, v, =abca.

8.8 TURING REDUCIBILITY

Reduction is a technique in which ifa problem A is reduced to problem B then any solution of B
solves A. In general, if we have an algorithm to convert some instance of problem A to some
instance of problem B that have the same answer then it is called Areduces to B.

FIGURE: Reduction

Definition : Let Aand B be the two setssuchthat 4, B ¢ N of natural numbers. ThenAis
Turing reducible to B and denotedas 4 <, B. ’

If there is an oracle machine that computes the characteristic function of A when it is executed
with oracle machine for B.

This is also called as Ais B ~ recursive and B - computable. The oracle machine is an abstract
machine used to study decision problen. It is also called as Turing machine with blackbox.

We say that Ais Turing equivalentto Band write 4 =, Bif 4<, Band B<; 4.

Properties :

1. Every setis Turing equivalent o its complement.

2. Every computable set is Turing equivalent to every other computable set.
3. 4a<, Band B<, Cthen 4%, B.

8.9 DEFINITION OF P AND NP PROBLEMS

A problem is said to be solvable if it has an algorithm to solve it. Problems can be categorized
into two groups depending on time taken for their execution.
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1. The problems whose solution times are bounded by polynomials of small degree.
Example: bubble sort algorithm obtains n numbers in sorted order in polynomial time

P(n) = n* —2n+1 wheren s the length of input. Hence, it comes under this group.

Second group is made up of problems whose bestknown algorithm are non polynomial
example, travelling salesman problem bas complexity of O( #* 2" which is exponential.
Hence, it comes under this group.

A problem can be solved if there is an algorithm to solve the given problem and time required is
expressed as a polynomial p(n) , n being length of input string. The problems of first group are of
thiskind. :

The problems of second group require large amount of time to execute and even require moderate

size so these problems are difficult to solve. Hence, problems of first kind are tractable or easy
and problems of second kind are intractable or hard.

8.9.1 P-Problem

P stands for deterministic polynomial time. A deterministic machine at each time executes an
instruction. Depending on instruction, it then goes tonext state which is unique.

Hence, time complexity of deterministic TM is the maximum number of moves made by Mis
processing any input string of length n, taken over allinputs of length n.

Definition : Alanguage.is said tobe in class P if there exists a ( deterministic ) TM M such
that M is of time complexity P(n) for some polynomial P and Maccepts L.
Class P consists of those problem that are solvable in polynomial time by DITM.

8.9.2 NP -Probiem

NP stands for nondeterministic poiyxiomial time.

The class NP consists of those problems that are verifiable in polynomial time. What we mean
here is that if we are given certificate of a solution then we can verify that the certificate is correct
in polynomial time in size of input problem.
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8.10 NP - COMPLETE AND NP - HARD PROBLEMS

A problem S is said to be NP- Complete problem if it satisfies the following two conditions.
1. SeNP,and

2. For every other problems §, e NP for some i=1,2, n, there is polynomial - time
transformation from S, fo § i.e. every probleminNP class polynomial -timereducibleto S.
We conclude one thing here that if , is NP - complete then Sis also NP - Complete.

As aconsequence, if we could find a polynomial time algorithm for S, then we can solve all NP
problems in polynomial time, because all problems in NP class are polynomial - time reducible to
each other.

"A problem P is said to be NP - Hard if it satisfies the second condition as NP - Complete, but
not necessarily the first condition .". '

The notion of NP - hardness plays an important role in the discussion about the relationship
between the complexity classes Pand NP, It is also often used to define the complexity class NP
- Complete which is the intersection of NP and NP - Hard. Consequently, the class NP - Hard
can be understood as the class of problems that are NP - complete or harder.

Example : AnNP-Hard problem isthe decision problem SUBSET - SUM whichis as follows.

" Given a set of integers, do any non empty subset of them add up to zero? Thisisa yes/no
question, and happens to be NP - complete .

There are also decision problems that are NP - Hard but not NP - Complete , for example, the
halting problem of Turing machine. It is easy to prove that the halting problem is NP - Hard but
not NP - Complete. It is also easy to see that halting problem is not in NP since all problems in
NP are decidable but the halting problem is not ( voilating the condition first given for NP -
complete languages ).

In Complexity theory, the NP - complete problems are the hardest problems in NP class, in the
sense that they are the ones most likely not to be in P class. The reason is that if we could find a
way to solve any NP - complete problem quickly, then you could use that algorithm to solve all
NP problems quickly.

Atpresenttime, all known algorithms for NP - complete problems require time which is exponential
in the input size. It is unknown whether there are any faster algorithms for these arenot.
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