REGULAR GRAMMARS

— e S ————— e

After going through this chapter, you should be able to understand :

o Regular Grammar
s Equivalence between Regular Grammar and FA
e Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, S) is said to be regular grammar iff the grammar is
right linear or left linear.
A grammar G is said to be right linear if all the productions are of the form

A-—>wB and/or A ->w where 4, BeV and 7.

A grammar G is said to be left linear if all the productions are of the form
A—>Bw and/or A —>w where 4,BeV and 7.

Example 1: The grammar

S - aaB | bbA | ¢

A - aAlb

B - bBla]e
isaright linear grammar. Note that ¢ and string of terminals can appear on RHS ofany production
and if non - terminal is present on R. H. S of any production, only one non - terminal should be
present and it has to be the right most symbol onR. H. 8.
Example 2 :

The granmmar

S —» Baa| Abb | ¢

A - Aalb

B - Bbla] ¢
isaleft linear grammar. Note that ¢ and string of terminals can appear on RHS of any production

and if'non - terminal is present on L. H. S of any production, only one non - terminal should be
present and it has to be the left most symbol onL. H. S.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3:
Consider the grammar
S - aA
A - aBjb
B -~ Abla

Inthis grammar, each production is either left linear or right linear. But, the grammar is not either
Jeft linear orright linear. Such type of grammar is called linear grammar. So, a grammar which has
at most onie non terminal on the right side of any production without restriction on the position of
this non - terminal (note the non - terminal can be leftmost or right most) is called linear
grammar.

Note ’fhat the language generated from the regular grammar is called regular language. So, there
should be some relation between the regular grammar and the FA, since, the language accepted
by FAis also regular language. So, we can constructa finite autormaton givenaregular granmar.

42 FAFROM REGULAR GRAMMAR

Theorem : LetG=(V, T, P,S)be a right linear grammar. Then there exists a language L(G)
which is accepted by a FA. i e, the language generated from the regular grammar
is regular language.

Proof :Let ¥ =(qg,, g,,....) be the variables and the start state S=¢, Let the productions in
the grammar be ’
g > F G4
g - na

4 = 5%

9n "> ¥pqan

Assume that the language L(G) generated from these productions is w. Corresponding to each
production in the grammar we canhave a equivalent transitions in the FAto accept the string w.
After accepting the string w, the FAwill be in the final state. The procedure to obtain FA from
these productions is given below : ‘

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 1. ¢, which is the start symbol in the grammar is the start state of FA.

Step 2: For each production of the form

9 > wg,
the corresponding transition defined will be

an{qisw)“ 4
Step 3 : For each production of the form ¢, — w
the comesponding transition defined will be 8’ (g,, w) =g, ,where g, isthe final state,

As the string w € Z(G) is also accepted by FA, by applying the transitions obtained from
step] through step3, the language is regular. So, the theorer is proved.

Example 1 : Construct a DFAto accept the language generated by the following grammar

S - 014
A — 10B
B — 04|11

Solution :

Note that for each production of the form A -» wB, the corresponding transition will be
3(4, w)=B.Also, for each production 4 - y , we can introduce the transition 8(4,w) =g,
where ¢, isthe final state. The transitions obtained from grammar G is shown using the following
table:

Productions Transitions

S - 5(S, 01 = 4
A - 8(4, 10)=8
B .- 8B, 0)=4

B ey 5(B, 1)=g,

The FA cotresponding to the transitions obtained is shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

So,the DFA M =(0.%, 8, q,, 4) where
O={5, 4, 8,4, %> 9%} , Z={08
g, =5, 4={4,}
& is as obtained from the above table.
The additional vertices introduced are g,,4,, ;-

Example 2 : Constructa DFAto accept the language generated by the following grammar .
S —> aA| ¢
A - aAlbB| ¢
B - bB| ¢

Solution :

Note that for each production of the form 4> wB, the corresponding transition will be
8(4,w) = B.Also , for each production 4 -» w , wecanintroduce the transition 8(4,w) =¢,

where ¢, is the final state. The transitions obtained from grammar G is shown using the following ‘
table:

Productions Transitions
8(S,0)=4
S is the final state
8(d,a)=4
8(A,b)=B
Alisthe final state
5(B,b)=B
B is the final state.

FORMAL LANGUAGES AND AUTOMATA THEORY

Note : For each transition of the form 4 —y ¢, make A as the final state.
"The FA corresponding to the transitions obtained is shown below :

So, the DFA M =(0.3, 8, g,, 4) where
Q=1{S. 4,8} ,S={a,b}
g, =8, d={S, 4, B}
Sisas obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : Let 1 =(0Q.=,58,9,,4) beafinite automaton. If L. is the regular language accepted
by FA, then there exists a right linear grammar G=(V, T, P, 8) so that L = L{G).

Proof : Let & =(0,2,5,9,,4) beafinite automata accepting L where

O ={q6:q1+-q5}

E={a,,ay,..a,}
Aregular grammar G = (V, T, P, S) can be constructed where

V= 90> G5 m-qn}

=X

S=g,
The productions P from the transitions can be obtained as shown below :
Step 1 : For each transition of the form 8(g,, @) =¢;

the corresponding production defined will be ¢, — agq,

Step 2: If ¢ e 4 i.e., ifqis the final state in FA, then introduce the production
g —>r&

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

REGULAR GRAMMARS
%
After going through this chapter, you should be able to understand :

o RegularGrammar
+ Equivalence between Regular Grammar and FA
o [Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, S)is said to be regular grammar iff the grammar is
right linear or left linear,
A grammar G is said to be right linear if all the productions are of the form

A->wB and/or A >w where 4, BeV and 5 7"

Agrammar G is said to be left linear if all the productions are of the form
A—>Bw and/or A >w where 4, BeV and 7.

Example 1: The grammar

S - aaB | bbA | ¢

A - aAlb

B -y bB] ai &
is aright linear grammar, Note that ¢ and string of terminals can appear on RHS of any production
and ifnon - terminal is present on R. H. S of any production, only one non - terminal should be
present and it has to be the right most symbol on R. H. S,
Example 2:

The grammar

S - Baa|Abb| ¢

A - Aalb

B - Bbla]e
isaleft linear grammar. Note that « and string of terminals can appear on RHS of any production
and ifnon - terminal is present on L. H. S of any production, only one non - terminal should be
present and it has to be the left most symbol onL. H. S.

FORMAL LANGUAGES AND AUTOMATA THEORY

Note : For cach transition of the form 4 —y¢, make Aasthe ﬁnai state.
The FA corresponding to the transitions obtained is shown below :

So,the DFA M =(Q.3, 8, g,, 4) where
O={S, 4B}, X={a,b}
g =S8, 4d={S, 4, B}
§isas obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : et i = (Q,2,6,9,,4) beafinite automaton. If L. is the regular language accepted
by FA, then there exists a right linear grammar G=(V, T, P, 8) so that L = L(G).

Proof : Let M =(0,2,5,9,,4) beafinite automata accepting L where

O ={q06:q1»-qn}
Z={a.,ay,..a,}
Aregular grammar G= (V, T, P, S) can be constructed where

V={qy a9}

T=%

S=gq,
The productions P from the transitions can be obtained as shown below :
Step 1 : For each transition of the form (g, @) =¢ ;

the corresponding production defined will be ¢, — ag,

Step 2. If g e 4 i.e,, ifqis the final state in FA, then introduce the production
g —>e

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

FORMAL LANGUAGES AND AUTOMATA THEORY

CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLs

5.1 CONTEXT FREE GRAMMARS

A grammar G = (V, T, P, S) issaid to be a CFG if the productions of G are of the form :

A—>a whereae(VuT)*
The right hand side of a CFG isnot restricted and it may be null or a combination of variables and

terminals. The possible length of right hand sentential form ranges from 0to o i.e., 0 < | o | <.

As we know that a CFG has no context neither left nor right. This is why, it is known as
CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG'’s.

Example 1: Considerthe grammar G = (¥, T, P, S) having productions :
S — aSa | bSh| €. Check the productions and find the language generated.

Solution :
Let P, :S — aSa (RHSisterminal variable terminal)
P, : § — bSh (RHSisterminal variable terminal)
P,: S - ¢ (RHSisnullstring)
Since, all productions are of the form 4 — «, where @ e(V U T') * ,hence ¢ isaCFG

FORMAL LANGUAGES AND AUTOMATA THEORY

So, the final grammar to generate the language L= { w|n,(w) =n, (w)} sG=(V,T,P,S)
where
={S} , T ={ab}
= { So>¢e
S— aSb
S—> bSa
S§— 5§
} S isthe start symbol

5.2 LEFTMOST AND RIGHTMOST DERIVATIONS

Leftmost derivation :

fG=W,T,P,S)isaCFGand w € L(G) then a derivation § =>w is called leftmost

derivation if and only if all steps involved in derivation have leftmost variable replacement only.

Rightmost derivation :
IfG=W,T,P,S) isaCFGand w ¢ L(G), thenaderivation § =>w is called rightmost

derivation if and only if all steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar S — § + S| S * 5| a|b. Find leftimost and rightmost
derivations forstring y = g * g + b.

Solution :

Leftmostderivation fory = g*g 4+ %
Ll (Usings — 5*§)
i *s (The first left hand symbolisa, sousing § —)
=atS+S (Using § —» § + §,inordertoget g + 5)
=a*a+Ss (Second symbol from theleftisa, so using § — a)

=a*a+b (The last symbol from the lefiis b, sousing § —»)

FORMAL LANGUAGES AND AUTOMATA THEORY

Rightmost derivation for w = g * g + b
S8 (Usings - §*5)

o §*S+§ (Since, in the above sentential form second symbol from the right is * so,

we can not use § — a|b. Therefore, weuse § — S+ §)
?S*S+b (Using § —)
:;‘:'S*acb (Using § —» a)

?a*a+b (Using § — a)

Example 2 : ConsideraCFG S — b4|aB, 4 — aS|addja, B —> bS|aBB|b . Find
leftmost and rightmost derivations for v = agabbabbba -

Solution :

Leftmost derivation for v - ggabbabbba :

S = aB (Using § — aB to generate first symbol of w)
aaBB (Since, second symbol is a,soweuse B —» aBB)
aaaBBB (Since, third symbol is a.soweuse B — aBB)
aaabBB (Since fourth symbol is b, soweuse B — b)
aaabbB (Since, fifth symbolisb,soweuse B —» b)

-> aaabbaBB (Since, sixth symbol isa, soweuse B8 — aBB)
aaabbabB (Since, seventh symbol is b,soweuse B —)
aaabbabbS (Since, eighth symbol is b, soweuse B — bS)
aaabbabbbA (Since, ninth symbol is b, sowe use § —» h4)
aaabbabbba (Since, the tenth symbolisa,sousing 4 — a)

Rightmost derivation for v = gaabbabbba
S = aB (Using § — aB to generate first symbol of w)

= aaBB (We need a as the rightmost symbol and second symbol from the left side, so we
use B — aBB)

aaBbS (Weneed aas rightmost symbol and this is obtained from Aonly, weuse B — 5S)

aaBbbA (Using S — b4)

aaBbba (Using 4 — a)

aaaBBbba (We need b as the fourth symbol from the right)

aaaBbbba (Using B — b)

aaabShbba (Using B —» bS)

4

=
=
=

R’

FORMAL LANGUAGES AND AUTOMATA THEORY

Figure (c) Parse tree for y = ab Figure (d) Parse tree for w = ab
So, the given grammar is ambiguous.

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form to another accepting the same language. Ifa grammar
has left recursive property, it is undesirable and left recursion should be eliminated. The left
recursion is defined as follows.

Definition :A grammar G is said to be left recursive if there is some non terminal A such that
A4 =* Aa.Inotherwords, in the derivation process starting from any non - terminal A, if a sentential
form starts with the same non - terminal A, then we say that the grammar is having left recursion.

Elimination of Left Recursion
The left recursion in a grammar G can be eliminated as shown below. Consider the A - production

oftheform A—Ax|Aayda; Aa,\B\B, | By B
where g,'s do not start with A. Then the A productions can be replaced by
A B A BA |BA o By A
A a4 a4 |z A

Note that «,'s do not start with 4t.

Example 1 : Eliminate left recursion from the following grammar
E—- E+T|T
T—T*F|F
F—»(E) |id

FORMAL LANGUAGES AND AUTOMATA THEORY

5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are not always optimized. That means grammar may consists of some extra symbols
(non - terminals). Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Eachvariable (i.e. non - terminal) and each terminal of G appears in the derivation of some
word in L.

2. There should not be any production as x —» ¥ where X and Y are non - terminals.
3. If e isnotinthe language L then there need not be the production x —»e.
We see the reduction of grammar as shown below :

Reduced grammar

useless symbols e productions unit productions

Removal of Elimination of J Removal of

5.5.1 Removal of useless symbols

Definition : A symbol X is useful if there is a derivation of the form
S=>'axf="w

Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of
terminals and all these symbols must be reachable from the start symbol S. Those symbols and
productions which are not at all used in the derivation are useless.

Theorem 5.5.1 :letG=(V, T, P, S)beaCFG We can find an equivalent grammar
G, = (V,,T;,P,,S) suchthatforeachAin (V;UT,) there exists o and £ in (FUT))* and x in

T* forwhich S =" adfg =" x.

FORMAL LANGUAGES AND AUTOMATA THEORY

P T,

S » a|BblAa a.b
A-»aB a,b
B alAa] ab

Theresulting grammar G, =(V,, 7,,P,,S) where
= {S,A,B}
= {ab}
= {
S - a|BbjaA
A < aB
B - alAa
} S isthe start symbol
such that each symbol Xin (¥, w 7,) hasaderivation ofthe form §=" axg =" w.

5.5.2 Eliminating < - productions

Aproduction of the form 4 —» « is undesirable ina CFG unless an empty string is derived from
the start symbol. Suppose, the language generated from a grammar G does not derive any
empty string and the grammar consists of - productions. Such e - productions can be removed.
An ¢ - production is defined as follows :

Definition1: LetG=(V,T,P, S)beaCFG. A production in P of the form

A—> e

iscalledan e - production or NULL production. After applying the production the variable A is
erased. For each Ain V, if there is a derivation of the form

A4=" e
then A isa nullable variable.
Example : Consider the grammar
S = ABCa|bD
A Y BC|b
B

- bl e

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2 : Construction of productions P, . Addanon e- productioninPto 7, . Takeall the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productions to P, .

Productions Resulting productions (7,)

S BAAB S -» BAAB|AAB |BAB|BAA|
AB|BB|BA|AA|A|B

A 0A2 A - 0A2[02

A . 2A0 A - 2A0]20

B AB B - AB|B|A g

’[g 1B B 1B]1 |

We can delete the productions of the form A —» A.In p, , the production B -» B canbe
deleted and the final grammar obtained after eliminating ¢ -productions is shown below.

The grammar G, = (V,,T;,P,,S) where

v, = {S,A,B,C.D}

T {ab,c,d}

P, {S > BAAB|AAB|BAB |BAA|AB|BB|BA|AA|A|B

A 5 0A2]|02[2A0]20
B » AB|A|1B]|1
} S isthe start symbol

5.5.3 Eliminating unit productions
Consider the production 4 — 8. The left hand side of the production and right hand side ofthe
production contains only one variable. Such productions are called unit productions. Formally,a
unit production is defined as follows.
Definition : LetG=(V,T,P,S)beaCFG. Any production in G of the form

A—>B
where A, p ey isaunit production,

In any grammar, the unit productions are undesirable. This is because one variable is simply
replaced by another variable.

FORMAL LANGUAGES AND AUTOMATA THEORY

In a CFG, there is no restriction on the right hand side of a production. The restrictions are
imposed on the right hand side of productionsina CFGresulting in normal forms. The different
normal formsare :

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF)

5.6.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal —s Non - terminal Non - terminal
Non - terminal —» terminal

The given CFG should be converted in the above format then we can say that the grammar is in
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all the useless symbols, e productions and unit productions from it. Thus this reduced
grammar can be then converted to CNF.

Definition :
LetG= (V, T,P,S)beaCFG The grammar G is said to be in CNF if all productions are
ofthe form
A B BC
or
A -
where A,Band CeV andaeT.
Note that if a grammar is in CNF, the right hand side of the production should contain two
symbols or one symbol. If there are two symbols on the right hand side those two symbols must
be non - terminals and if there is only one symbol, that symbol must be aterminal.

Theorem 5.6.1 : Let G=(V, T, P, S) be a CFG which generates context free language
without <. We can find an equivalent context free grammar G, =(V.T ,P,,S) in CNF such that

L(G)=L(G,) i.e., all productionsin G, are of the form

A - BC
or
A -

FORMAL LANGUAGES AND AUTOMATA THEORY

Thus, from (7), (8) and (9), the resultant grammar becomes :
SV, S|V, |alb
V> -
V,= [
Vi — SV,
v, - SV,
v,-»1
Ve—]

Now, in the resultant grammar (C), following is the production which is not in the form of CNE:
EIAAA

We can write this production as :
SV, V,
Vs = ViV

Thus, from (10) and (11), the resultant grammar becomes :
S >V SW,V,|db
V-
V,—[
v, >V, V,
v, sV,
v, > 5V,
| 1)
V>]

Thus, the resultant grammar (D) is in the form of CNF, which is the required solution.

5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows :

Non - terminal — one terminal. Any number of non - terminals

Example :
isin GNF
isin GNF

FORMAL LANGUAGES AND AUTOMATA THEORY

From the subtree shown in figure (b) , we get ¢ :', aaSe O § s 2 Sz, andconsidering

the subtree shown in ﬁgure(c),' Weget §osqg OF § Rl 7

The subtree shown in figure (b) can be added as many times as we like in the parse tree
shown in figure (a). S0, §=z! 8z} = z,'z, 2}

Therefore, string z can be written as zyz,z,y for some uand y substrings of z. The substrings
z, and z, can be pumped as many times as we like. Replacing z;, z; and z, by v, wand x

respectively, we get z=uvwxy and g => w'wx'y forsomei=0,1,2,
Hence , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CFL. We proceed as we have
seen in application of pumping lemma for regular sets and get contradiction. The result of this
lemma is always negative.

Procedure for Proving Language is not Context - free

The following steps are considered to show a given language is not context - free.

Step1:

Supposethat £ iscontext - free. Let 1 be the natural number obtained by using pumping lemma.
Step 2:

Chooseastring xc L such that {x| =1 using pumping lemma principle write z=uvwxy.

Step 3:

Find suitable i so that wv 'wx ‘yz 1. . Thisisacontradiction. So L isnot context - free.

FORMAL LANGUAGES AND AUTOMATA THEORY

Case 2:

vea* and xc.*. Let ,_,» and pg=n!. Pumping v and x, (¢+1) times, we get :
2= uv"“wx"”y -

Inz',no.ofa's willbe n-p+nl+ p=nlyn,

No.of b's in Z' will remain n! +n. Hence, no. ofa's=no. of b's in Z'.

Similarly, in other cases, we can arrive at strings not as per specification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs

The closure properties that hold for regular languages do not always hold for context free languages.
Consider those operations which preserve CFL.

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.
Union
Concatenation and

Intersection

1
2
3. Kleene Closure (Context-free languages may or may not close under following properties)
4
5

Complementation

Theorem 5.8.1 :If 7, and L, aretwo CFLs, then unionof Z, and L, denoted by L; + L,
or [, U L, isalsoa CFL.

Proof :

Let CFG G, = (¥,,T,,P,S) generates L; and CFG G, = (V,,T,,P,S) generates L,

and G=(V,T, P,S) generates L = L; + L,.

We construct G as follows :

Step 1: Rename the variables of CFG G,

Ifv, = {S, 4, B,..., X} ,thentherenamed variables are {S;, 4;, B;,...X;} . Thismodification
should be reflected in productions also.

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2 : Rename the variables of CFG G,

If ¥, ={S,4,B,..X}, then the renamed variables are {S;, 4y, B,....X5}. This
modification should be reflected in production also.

Step 3 : We get of the productions of G; and G, to get productions of G as follows :

S — S§;|S,,where S, and §, are starting symbols of grammars G; and G, respectively and
S) -productions and S, - productions remain unchanged.

r="rv7,,
V ={S\,4,,B,,. X} U{S,,4,,B,,..X,}

Since, all productions of Gy and G, including § — S; | S, are in context-free form, so
GisaCFG.

Language generated by G :
L(G) =Language generated from (S; or S5)
=Language generated from S, or language generated from S,
= L(Gy) or L(G) (Since, §; and §, are starting symbols of G; and G, respectively.)
= I or L, (Since, G, produces L) and G, produces L; .)
=L+

Hence, statement of the theorem is proved.

Example : Considerthe CFGs S — aSh|ab and S —» ¢Sdd | edd , which generate
languages I; and L, respectively. Construct grammar for L = Ly + L.

Solution :

Let G, generates [; and G, generates [, and G = (V,T, P,S) generates L = I + L.

Renaming the variables of G, and G,, we get

v, ={S,} and ¥, ={S,}, where §; - productions are $; — aSb | ab, and
S, - productions are S, — cS,dd | cdd

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

PUSH DOWN AUTOMATA

After going through this chapter, you should be able to understand :

Push down automata

Acceptance by final state and by empty stack
Equivalence of CFL and PDA

Interconversion

Introduction to DCFL and DPDA
6.1 INTRODUCTION

APDA is an enhancement of finite automata (FA). Finite automata with a stack memory can be
viewed as pushdown automata, Addition of stack memory enhances the capability of Pushdown
automata as compared to finite automata. The stack memory is potentially infinite and it is a data
structure. Its operation is based on last - in - first - out (LIFO). It means, the last object pushed
on the stack is popped first for operation. We assume a stack is long enough and linearly arranged.
We add or remove objects at the left end.

6.1.1 Model of Pushdown Automata (PDA)

A model of pushdown automata is shown in below figure. It consists of a finite tape, areading
head, which reads from the tape, a stack memory operating in LIFO fashion.

\e— Input Tape

Finite State Control — Stack

FIGURE : Model of Pushdown Automata

FORMAL LANGUAGES AND AUTOMATA THEORY

There are two alphabets ; one for input tape and another for stack. The stack alphabet is denoted
by r and input alphabet is denoted by 5 . PDA reads from both the alphabets ; one symbol
from the input and one symbol from the stack.

6.1.2 Mathematical Description of PDA
A pushdown automata is described by 7 - tuple (Q,2,1",8, ¢,,Z,.F) , Where
1. Q isfinite and nonempty set of states,
2. 3 isinputalphabet,
3. T isfinite and nonempty set of pushdown symbols,
4. g isthe transition function which maps
From Q % (T U {g}) x T to (finite subset of) O x I'¥,
5. g, & Q,isthestarting state,
6. Z, e I',isthestarting (top most or initial) stack symbol, and
7. F c Q,isthesetoffinal states.

6.1.3 Moves of PDA
The move of PDA means that what are the options to proceed further after reading inputs in

some state and writing some string on the stack. As we have discussed earlier that PDA is

nondeterministic device having some finite number of choices of moves in each situation.
The move will be of two types :

1. Tnthefirsttype of move, an input symbol is read from the tape, it means, the head is advanced
and depending upon the topmost symbol on the stack and present state, PDA has number of
choices to proceed further.

In the second type of move, the input symbol is not read from the tape, it means, head is not
advanced and the topmost symbol of stack is used. The topmost of stack is modified without
reading the input symbol. It is also known asan e -move.

Mathematically first type of move is defined as follows.

5(9,a,2) ={(pya)(p2:@3) Pys@,)} , Where for 1 < i < n,q,p, are states in

Q,ack, Zel,and ael*.
PDA reads an input symbol a and one stack symbol Z in present state ¢ and for any value(s) of
i, enters state p, , replaces stack symbol Z by string &, I * , and head isadvanced onecell on
the tape. Now, the leftmost symbol of string ¢, is assumed as the topmost symbol on the stack.
Mathematically second type of move is defined as follows.

8(g,6,Z2) = {(p1: @ (P2:@3)ser(Prs @)} 5 where for 1 < i < n, g, p, are states in

Q,acl, Zel,and a,eT *.

FORMAL LANGUAGES AND AUTOMATA THEORY

PDA does not read input symbol but it reads stack symbol Z in present state g and for any
value(s) of #, enters state p,, replaces stack symbol Z by string a, € I' *, and head is not

advanced on the tape. Now, the lefimost symbol of string «, is assumed as the topmost symbol
on the stack.

The string «, be any one of the following :

l. @, =e inthiscase the topmost stack symbol Z,,, iserased and second topmost symbol
becomes the topmost symbol in the next move. It is shown in figure ().

5

FIGURE(a): Move of PDA
2. a, = c,c e I ,inthis case the topmost stack symbol Z,,, is replaced by symbol c. It is

shown in figure(b)

)

FIGURE(b): Move of PDA
3. @, =c¢,c;...c, »inthis case the topmost stack symbol Z,,, isreplaced by string cic;,. .. c,,-
Itis shown in figure(c).

FORMAL LANGUAGES AND AUTOMATA THEORY

FIGURE(c): Move of PDA

6.1.4 Instantaneous Description (ID) of PDA

LetPDA M = (02,15, 40, Zy.F) » thenits configuration at a given instant can be defined by
instantaneous description (ID). An ID includes state, remaining input string, and remaining stack
string (symbols). So, anID is (¢,x,@) ,where g e Q. xe Z*, a e I'*.

The relation between two consecutive IDs is represented by the sign |—— :
We say (¢,ax,ZB) |57(P»*.@B) if 8 (g, a, Z) contains (p,a), where Z,B,acT*,a
maybenullora €Z, p,g € Q forM

The reflexive and transitive closure of the relation |77 is denoted by |~,&
Properties :
1. If (q,x,a)lr;(p,‘:’,d),whcre ael*xel*, and p,g €Q,thenforall y eZ *.

@9, 25, y.@),
2. If (q.xy,a)l—,c,(p,y,a), where a eT*x,yeZ*, and p,q €Q, then

(‘],x’a')l';T(P,e,a), and

3. If (q,X,d)l%(P,G,ﬁ), where a, Bel*xei*, and p,geQ. then

(¢, xa 7)]{,—(p,e,ﬂ7), where y eI *

FORMAL LANGUAGES AND AUTOMATA THEORY

6.1.5 Acceptance by PDA

Let M'be a PDA, the accepted language is represented by N(M). We defined the acceptance by
PDA in two ways.

1. Let M =(Q,ZT,3, q,,2Z,,F) ,then N(M) is accepted by final state such that

N (M)=(wi(qo.w,Z)5(a €.8) , where ¢ € O, weS*Z,,fel*, and

q; €F}

It is similar to the acceptance by FA discussed earlier. We define some final states and
the accepted language N(M) is the set of all input strings for which some choice of moves
leads to some final state.

Let M =(Q.2,1.5.9,.Z,.¢) , then N(M) is accepted by empty stack or null stack such

that N (M)= {wi(qy.w.Z,)54 P:c.€), where p € O, w e *}

The language N(M) is the set of all input strings for which some sequence of moves
causes the PDA to empty its stack.

Note : Ifacceptance is defined by empty stack then there is no meaning of final state and it is
represented by ¢ .

Example : consider a PDA M = ({g,.9,,9,}.{a,c}1a,Z;},5.9,Z049,}) shown in
below figure. Check the acceptability of string aacaa.

a, Zy, aZ, a,a, €

c,aa Lo Lo :
8 OERoEAN gy

a,a,aa
FIGURE : PDA accepting {a"ca":n=>1}

Note : Edges are labeled with Input symbol, stack symbol, written symbol on the stack.

FORMAL LANGUAGES AND AUTOMATA THEORY

Solution :
The transition function § isdefined as follows :

8(q0:a,Z0) = {(q0,9Z,4)} »
8(qq,a,a)={(4,.aa)},
8(gq5¢,a) = {(g),a)} 5
8(q,,a,a) ={(q,€)}, and

3(q,.6,2,) = {(92,Z)}
Following moves are carried out in order to check acceptability of string aacaa :

(g4, aacaa ,ZO)‘—(qo,acaa .aZgy)
|—(q,,,cua vaaZ)
|—(ql ,aa,aaZ ;)

l_(qlva'azo)

I_(QUE’ZO)

l—(‘lz’e»zo)

Hence, (¢,,aacaa ,lo)iﬁ(qz,e,lo) .
Therefore, the string aacaa is accepted by 7.

6.2 CONSTRUCTION OF PDA

In this section, we shall see how PDA's can be constructed.

Example 1 : Obtain 2 PDA to accept the language L(M) = { wCw"| w e (a+b)*} where

R is reverse of W.
Solution:

Itis clear from the language L(M) = { wCw®} thatif v =apb

then reverse of w denoted by & willbe % _ pp, and the language L willbe y,cy2
i.e., abbCbba which is a string of palindrome.

FORMAL LANGUAGES AND AUTOMATA THEORY

To accept the string :

The sequence of moves made by the PDA for the string aabCbaa is shown below.
Initial ID

(g¢> aabChaa, Z,) = (g0, abCbaa, aZ,)
- (99, bCbhaa, aaZ;)
|- (90, Cbaa, baaZ;)
|- (g1,baa baaZ,)
= (q1,aa,aaZ,)
3 (91,a,aZ,)
|- (91-6.2,)
o (92 & Z)
(Final Configuration)

Since g, is the final state and input string is € in the final configuration, the string aabCbaa
is accepted by the PDA .

To reject the string :
The sequence of moves made by the PDA for the string aabCbab is shown below .
Initial [D
(g9 aabCbab, Z;) (qy. abCbab, aZ,)
(g0, bCbhab, aaZ,)
(90, Chab, baaZy)
(q,, bab, baaZy)
(q;, ab, aaZy)
(41, b, azy)
(Final Configuration)
Since the transition &(q,, b, a) isnot defined, the string aabChab is not a palindrome and
the machine halts and the string is rejected by the PDA.

Example 2 : Obtain a PDA to accept the language L = { a" 4" n > 1} by a final state.

Solution :

The machine should accept n number of a's followed by n number of b's.

FORMAL LANGUAGES AND AUTOMATA THEORY

6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss about the deterministic and nondeterministic behavior of pushdown
automata.

6.3.1 Nondeterministic PDA (NPDA)

Like NFA, nondeterministic PDA (NPDA) has finite number of choices for its inputs. As we
have discussed in the mathematical description that transition function § which maps from
0 x (2 U {€}) x T to (finite subset of) O x I' *. Anondeterministic PDA accepts an input if
asequence of choices leads to some final state or causes PDA to empty its stack. Since, sometimes
it has more than one choice to move further on a particular input ; it means, PDA guesses the
right choice always, otherwise it will fail and will be in hang state.

Example : consider a nondeterministic PDA M = ({g,},{a.b}.{a,b,Z},0.9,,Z.¢), for the

language I, = {a"b" : n > 1} ;where § is defined as follows :
3(qs:€,Z) = {(qo, ab),(qq,aZb)} (Two possiblemoves forinput e onthetape and Zon the stack),

é (‘lo,a,a) = {(Qo’e)} ’ and é (QD!b’b) = {(qu;e)}
Check whether string w = aabb is accepted ornot ?
Solution : Initial configuration is (g,,aabb, Z) . Following moves are possible :

(o, aabb,ab) ~> (go,abb,b) —» &
(qa,aabb,Z){
(go,aabb,aZb) ——w (q,,abb,Zb)

(go.abb,abb) (go-abb.aZbb)

(g, bb,bb) (go,bb, Zbb)

(QO)bxb)
(gy.bb,abbb) (qo,bb,aZbbb)
(90,€:€)

] o
Hence, w = aabbis accepted by empty stack.

FORMAL LANGUAGES AND AUTOMATA THEORY

One thing is noticeable here that only one move sequence leads to empty store and other don't.
In other words, we say that some move sequence(s) leads to accepting configuration and other
lead to hang state.

6.3.2 Deterministic PDA (DPDA)

Deterministic PDA (DPDA) is just like DFA, which has af most one choice to move for certain

input. APDA M =(Q,%,T,6,49,,Z,, F) isdeterministic if it satisfies both the conditions given

as follows :

1. Foranygq € Q,ae(Tw {e})' ,and Z €I, & (g, a, Z) has at most one choice of move.

2. Forany ge Q,and 7z e, if 8(q,€ 2) is defined i.e. 8(q, ¢ Z) # ¢, then
8(g,a,Z) = ¢ forall g ¢ &

Example : Consider a DPDA M = ({g4,q,},{a.c},{@,Zy},6,94.Zy,¢) accepting the

language {a"ca" :n >1}.where § is defined as follows :

6(g0,a,Zy) = {(qy,9Z,)}
6(qq,a.a) ={(gp,aa)},
5(‘10»0»0) = {(ql’a)};
8(qy,a,a) = {(g,€)}, and 8(g;,€,Zy) = {(g),€)}
Check whether the string w = aacaa is accepted by empty stack or not ?
Solution :
We see that in each transition DPDA has at most one move. Initial configuration is

(qq,aacaa, Z,) . Following are the possible moves.
(qq,aacaa ,Zy) —> (qy,acaa,aZ,) —» (gy,caa,aaZy) —> (qy,aa,aaZ,)
{

(QIsE’G) = (qhe’zo) & (QDavaO)
Hence, the string w = aacaa is accepted by empty stack.

As we have discussed in earlier chapters that DFA and NFA are equivalent with respect to
the language acceptance, but the same is not true for the PDA.

For example, language 7, ={ww *:w € (a U b) *} isaccepted by nondeterministic PDA,
cannot by any deterministic PDA. A nondeterministic PDA can not be converted into equivalent
deterministic PDA, but all DCFLs which are accepted by DPDA, are also accepted by NPDA.
So, we say that deterministic PDA is a proper subset of nondeterministic PDA. Hence, the
power of nondeterministic PDA is more as compared to deterministic PDA.

FORMAL LANGUAGES AND AUTOMATA THEORY

6.4 ACCEPTANCE OF LANGUAGE BY PDA
The language can be accepted by a Push Down Automata using two approaches.

1. Acceptance by Final State : The PDA accepts its input by consuming it and then it enters
in the final state.

Acceptance by empty stack : On reading the input string from initial configuration for
some PDA, the stack of PDA gets empty.

6.4.1 Equivalence of Empty Store and Final state acceptance

Theorem:
If M, =(0,,2,T,,8,,p,,Z,,4) isaPDA accepting CFL L by empty store then there

existsPDA M, =(0,,2.13,8,, p1,Z,,{q,}) whichaccepts L by final state.

Proof :
First we construct PDA M, based onPDA M, and then we prove that both accept L.

Step 1 : Construction of PDA M, based on given PDA A,

z issame for both PDAs. We add a new initial state and a new final state with given PDA 1, .

So, 0, =0, Vi{p,vgq,}

The stack alphabet T, of PDA s, contains one additional symbol Z, with T, .

So, I, =T, U {Z,}
The transition function &, containsall the transitions of given PDA 1, and two additional transitions
(R, and Ry) asdefined as follows:

Ry :6,(p2i€,Z,) ={(p1,2,2,)},

R,:6,(q,a,2)=6,(q,a,Z) forall (¢,e,Z)in Q, x (£ U {e}) x T,

(the original transitions of A,), and
Ry:6,(9,€,Z,)={(q,,€)} forall g € Q,

Bythe R, , &, moves fromitsinitial ID (p,,e,Z,) totheinitial ID of », By R, , A, usesall the
transitions of u, afterreaching the initial ID of », and by using Ry », reaches the final state ¢ §if

FORMAL LANGUAGES AND AUTOMATA THEORY

The block diagram is shown in below figure.

‘a €,2,,2, 2, €,Z,,a

FIGURE : Block diagram of PDA u,

Step 2 : The language accepted by PDA M, and PDA M,
The behaviorsof A, and M, are same except the two by e -movesdefinedby Ry and Rj.
Let string w e [andaccepted by A, then

(p.,w,Z,)lM'—‘(q,e,e) where ¢ € 0, (Result 1)

For M,,theinitial IDis (p,,w,Z,) and it can be written as (p,,ewe2,). So,
(P2 €& Zy) |5 (p1s,21Z,) (Thisinitial IDof M,)

| (@.€.22) (by R, and Result 1)

|- @,,6.@) aeT; By Ry)
Thus, if M, accepts w, then M, also acceptsit.

Itmeans L(M,)c L(M,) (Result 2)
Letstring w ¢ L and accepted by PDA M, , then

(preweZ,) ‘E (pwZ,Z,) By Ry) (Result 3)

iz (@.6.2,) By R,) (Result 4)

1ﬁ; (q[9esa) a Er; (By R3)
Note : The Result 3 is the initial ID of M,. The Result 4 shows the empty store for M, if
symbol Z, is not there.

FORMAL LANGUAGES AND AUTOMATA THEORY

For M,,theinitial IDis (p,, w,Z,)

So, (P1sw,Z,) 577 (9,€,€) ,where ¢ € Q, (ByResult3 and Result4) Thus, if M, accepts
w,then M, also accepts it.
It means, L(M,) < L(M,) (Result 5)

Therefore, L = L(M,)= L(M,) (From Result 2 and Result 5)
Hence, the statement of theorem is proved.

Example: Consider a nondeterministic PDA M, = ({g, }, {a.b}. {a.b, S}, 8,4,.5,4) which
accepts the language 7 = {a"p" : n > 1} by empty store, where § is defined as follows :
6(q9,€,8)={(qp,ab), (g,,aSb)} (Two possible moves),
8(g0,a,a) ={(g,,€)} , and & (qq,b,b) = {(g,,€)}

Construct an equivalent PDA M, which accepts L in final state and check whether string
w = aabb is accepted or not ?

Solution : Following moves are carried out by PDA M, in order to accept yw = gabb :

(gq,aabb,S)]— (qq,aabb,aSbh)

]— (q,.abb, Sb)

|—(g0-abb,abb)

[—(qq, b,)
|—(a0.0.5)

I_ (gy€,€)

Hence, (49,aabb,5) |- (4o, €,€)
Therefore, yw = aabb isacceptedby M,.

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY

TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine

Design of TM

Computable functions

Recursively Enumerable languages
Church's Hypothesis & Counter machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages (generated from regular grammar), context free languages (generated from
context free grammar) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar. Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine model is shown in below figure . It is a finite automaton connected to read -
write head with the following components :
. Tape
. Read - write head
Control unit

Tape

Tala[a] [ebfbT....T 1]

Read-write Head

Control
Unit

FIGURE : Turing machine model

FORMAL LANGUAGES AND AUTOMATA THEORY

Tape : Itisatemporary storageandis divided into cells. Each cell can store the information of
only one symbol. The string to be scanned will be stored from the left most position on the tape.
The string to be scanned should end with infinite number of blanks. :

Read -write head : The read - write head can read a symbol from where it is pointing to and
it can write into the tape to where the read - write head points to.

Control Unit: The reading/ writing from / to the tape is determined by the conirol unit. The
different moves performed by the machine depends on the current scanned symbol and the
current state. The tead - write head can move either towards left or right i.¢., movement can be
on both the directions. The various moves performed by the machine are ;

1. Change of state from one state to another state
2. The symbol pointing to by the read - write head can be replaced by another symbol.
3. The read - write head may move either towards left or towards right.

The Turing machine can be represented using various notations such as
o Transition table
. Instantaneous description
. Transition diagram

7.2.1 Transition Table

The table below shows the transition table for some Turing machive. Later sections describe how
1o obtain the transition table.

Tape Symbols (I')
a b X Y

(qh X, R) 2 - (93, Y, R)

G a R @t - @B | -

(Ch, a, L) &4 (9> X, R) (%s Y, L) -

- * - (g3. ¥, R) 44, 8, B

FORMAL LANGUAGES AND AUTOMATA THEORY

Note that for each state g, there can be a corresponding entry for the symbol in 1. Inthis table
the symbols a and b are input symbols and can be denoted by the symbol 5. Thus S I

excluding the symbol B. The symbol B indicates a blank character and usually the string ends
with infinite number of B's i, e., blank characters. The undefined entries indicate that there are no
- transitions defined or there can be a transition to dead state. When there is a transition to the

dead state, the machine halts and the input string is rejected by the machine. it is clear from the
table that

§:0xTw(@x Tx{LR})

where 0= {490,419, ¢3-94}5 T={a, b}

I'={a, b,X,Y,B}

qo istheinitial state;” Bisaspecial symbol indicating blank character

F ={¢,} whichisthe final state,
Thus , a Turing Machine M can be defined as follows.
Definition : The Turing Machine M =(Q.%,T,8,q,,8,F) where

Qs setof finite states

3 is set of input alphabets

I issetoftape symbols

& istransition function Q xI'to (Q xI'x{L,R})

g, isthe initial state

B isaspecial symbol indicating blank character

F @ issetoffinal states.

7.2.2 Instantaneous description (ID)

Unlike the ID described in PDA, in Turing machine (TM), the ID is defined on the whole string
{ not on the string to be scanned) and the current state of the machine.

Definition :

AnID of TM isastring in a ¢, where q is the current state, « g is the string made from tape

symbols denoted by yi. €., @ and 8 e I'*. Theread - write head points to the first character of
the substring A. The initial I is denoted by go8 where q is the start state and the read - write

head points to the first symbol of o from left. The final ID is denoted by o898 where ge F is
the final state and the read - write head points to the blank character denoted by B.

FORMAL LANGUAGES AND AUTOMATA THEORY

Examp!é : Consider the snapshot of a Turing machine
Tape
galiﬁzlaslquziﬂﬂacimlaﬂ

Read-write Head -

" Control
Unit

In this machine, each «,eI' (i.e.,each g, belongsto the tape symbol). In this snapshot, the
symbol 4 is under read - write head and the symbol towards left of g, 1.e, g, isthe current
state. Note that, in the Turing machine, the symbol immediately towards left of the read - write
head will be the current state of the machine and the symbol immediately towards right of the
state will be the next symbol to be scanned. So, in this case an ID is denoted by

Gty Ay gy Qs Qg
where the substring aa,asa, towards left of the state g, is the left sequence, the
substring a,a,a,a..... towards right of the state g, is the right sequence and ¢, isthe current state
of the machine. The symbol a; is the next symbol to be scanned.
Assume that the current ID of the Turing machine is aya,4,0,9,350,0,05
snapshot of example. i :
Suppose, there is a transition 8(g,, a5) = (43,81, R)

Tt means that if the machine is in state g, and the next symbol to be scanned is a5, then the
machine enters into state g, replacing the symbol a; by & and R indicates that the read - write
head is moved one symbol towards right. The new configuration obtained is

0,850, b14305045

This can be represented by 8 MOVE S 0,,a,a, 4, 00513y | ~@10330, 1123854708

Similarly if the current ID of the Turing maching is ,a,0,0,9,d5a50,45
and there is a transition

5(q4,a5)=(q;.¢1,L)
means that if the machine isin state ¢, and the next symbol to be scanned is a5, thenthe machine
enters into state g, replacing the symbol a5 by ¢, and L indicates that the read - write head is
moved one symbol towards left. The new configuration obtained is

Q333G 3401953708

FORMAL LANGUAGES AND AUTOMATA THEORY

This can be represented by amove as 6,a,0,4,4,05060,05.v |- #0305 G184¢,060, 0

This configuration indicates that the new state is g, , the next input symbol to be scanned
is g, . The actions performed by TM depends on

1. The current state.

2. The whole string to be scanned

3. The current position of the read - write head
The action performed by the machine consists of

1. Changing the states from one state to another

2. Replacing the symbol pointed to by the read - write head

3. Movement of the read - write head towards left or right.

7.2.3 The move of Turing Machine M can be defined as follows

Definition : Let M =(Q,5T,6.9,.8,F) be a TM. Let the ID of M be
@y @y GGy Ty eneenay WheETe @ T for 1< j<n-1, g e isthe current state and a4, as
the next symbol to scarmed. If there is a transition (g,) =(p, b, B)
thenthe move of machine Mwillbe a,a,a4.....a,_1ga, a4 p0a, =

Ifthereis a transition g, a;) =(p, b, L)
then the move of machine M will be

A3 433 Qpayemn-ly

7.2.4 Acceptance of a language by TM
The language accepted by TM is defined as follows.

Definition ;

Let M = (Q,2,1,6.4,,B,F) bea TM. The language L(M) accepted by M isdefined as
L(M)={wigow}- *ay p &, wWhere weE*, pe F and o, @, & T'*}
i.e., setofall those words win 3+ which causes M to move from start state g, to the final
state p. The language accepted by TM is called recursively enumerable language.

The string w which is the string to be scanned, should end with infinite number of blanks.
Initially, the machine will be in the start state ¢, withread - write head pointing to the first symbol
of wftom left. After some sequence of moves, if the Turing machine enters into the final state and
halts, then we say that the string w is accepted by Turing machine.

FORMAL LANGUAGES AND AUTOMATA THEORY

7.2.5 Differences between TN and PDA
Push Down Automa :

1.

2.
3

A PDA is a nondeterministic finite automaton coupled with a stack that can be used to store
astring of arbitrary length.

‘The stack can be read and modified only at its top.

A PDA chooses its next move based on its current state, the next input symbol and the
symbol at the top of the stack.

. There are two ways in which the PDA may be allowed to signal acceptance. One is by

6.

7

entering an accepting state, the other by emptying its stack.

. ID consisting of the state, remaining input and stack contents to describe the "current condition”

ofaPDA.

The languages accepted by PDA's either by final state or by empty stack, are exactly the
context - free languages.
A PDA languages lie strictly between regular languages and CSL's.

Turing Machines :

1.

The TM is an abstract computing machine with the power of both real computers and of
other mathematical definitions of what can be computed.

. TM consists of a finite - state control and an infinite tape divided into cells.

TM makes moves based on its current state and the tape symbol at the cell scanned by the
tape head.

The blank is one of tape symbols but not input symbol.

TM accepts its input if it ever enters an accepting state.

The languages accepted by TM's are called Recursively Enumerable (RE) languages.

. Instantaneous description of TM describes current configuration ofa TM by finite- length sting,

Storage in the finite control helps to designa TM for a particular language.

. ATM can simulate the storage and control of 2 real computer by using one tape to store all

the locations and their contents.

7.3 CONSTRUCTION OF TURING MACHINE (TM)

In this section, we shall see how TMs can be constructed.

Example 1: Obtain a Turing machine to accept the language L = {0 "1" [n 21} .

Solution : Note that n number of (s should be followed by n number of I's. For this let us
take an example of the string 1 = 00001111. The siring w should be accepted as it has four zeroes
followed by equal number of 1's.

FORMAL LANGUAGES AND AUTOMATA THEORY

General Procedure :
Let g, bethe start state and let theread - write head points to the first symbol of the string to be
scanned. The general procedure to design TM for this case is shown below
1. Replace the left most 0 by X and change the state to g, and thenmove the read - write head
towardsright. This is because, aftera zero is replaced, we have to replace the corresponding
1 so that number of zeroes matches withnumber of 1's.
2. Search for the lefimost 1 and replace it by the symbol Y and move towards left (soasto
obtain the lefimost 0 again). Steps 1 and 2 can be repeated.
Consider the situation
XX00YY11
t
o
where first two 0's are replaced by Xs and first two 1's are replaced by Ys. In this situation, the
read - write head points to the left most zero and the machine is in state g, . With thisas the
configuration , now let us design the TM.
Step 1: Instate g, , replace 0 by X, change the state to ¢, and move the pointer towards
right. The transition for this can be of the form
5(q0, 0) = (*’h»v X, R
The resulting configurationis shown below .
XXX0YY11
.
4
Step 2 : Instate g, , we have to obtain the left - most 1 and replace itby Y. For this, letus move
the pointer to point to leftmost one. Whenthe pointer is moved towards 1, the symbols encountered
may be 0 and Y. Irrespective what symbol is encountered, replace 0 by 0, Y by Y, remain in state
g, and move the pointer towards right. The transitions for this can be of the form

5(‘11&9):(‘1!,03R)
8(g,.Y)=(q),Y sR)

When these transifions are repeatedly applied, the following configuration is obtained.

XXX0YY1l

T
2

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 3 : Instate g,, if the input symbol to be scanned isa 1, then replace 1 by Y, change the
state 1o ¢, and move the pointer towards left. The transition for this can be of the form

S(gq.1)=(q,,Y,L)
and the following configuration is obtained.

XXX0YYY1

T
9z
Note that the pointer is moved towards left. This is because, a zero is replaced by X and the
corresponding 1 is replaced by Y. Now, we have to scan for the left most 0 again and so, the
pointer was move towards left. :
Step 4 : Note that to obtain leftmost zero, we need to obtain right most X first. So, we scan for -
the right most X. During this process we may encounter Y's and 0's. Replace Yby Y, 0 by 0,
remain in state g, only and move the pointer towards left. The transitions for this can be of the
form 6(q2:Y)=(42.7,L)
5(q2$0):(q2 ’O:L)
The following configuration is obtained
XXX0YYYI
T
U7

Step 5: Now, we have obtained the right most X. To get leftmost 0, replace X by X, change
the state to g, and move the pointer towards right. The transition for this can be of the form

§(q, X)=(qps X ,R)
and the following configuration is obtained

XXX0YYY!

2
4o
Now, repeating the steps 1 through 5, we get the configuration shown below
| XXXXYYYY

4

o
Step 6 : Instate g, , ifthe scanned symbol is Y, it means that there are no more 0's. If there are
10 zetoes we should see that there are no 1's. For this we change the state to g, replace Yby Y
and move the pointer towards right. The transition for this can be of the form

FORMAL LANGUAGES AND AUTOMATA THEORY

8(qq.Y)=(4;,Y,R)
and the following configuration is obtained
XXXXYYYY
I
3
Instate ¢,, we should see that there are only Ys and no more 1's. So, as we can replace Yby Y
andremainin g, only. The transition for this can be of the form
6(¢3.Y)=(g5,Y,R)
Repeatedly applying this transition, the following configuration is obtained .
XXXXYYYYB
2
93
Note that the string ends with infinite number of blanks and so, in state ¢, if we encounter the
symbol B, meansthat end of string is encountered and there exists n number of O's ending withn
number of 1's. So, in state ¢, , on input symbol B, change the state to ¢, , replace B by B and
move the pointer towards right and the string is accepted. The transition for this can be of the
form 8(q5.8)=(¢4.B.R)

The following configuration is obtained
XXXXYYYYBB

T
94

So, the Turing machine to accept the language 1 ={a” b"|n21}

isgivenby M =(Q,5.1,0.,94.B,F)
where
O=1{g- 9,99 }5 E={0,1}; T={01 XY B}
go € Q isthe startstate of machine; B eI isthe blank symbol.
F ={q,} isthefinal state.
& is shown below.
8(g4: O = (¢, X, B)
8(q;,0)=(4,,0,R)

FORMAL LANGUAGES AND AUTOMATA THEORY

85(g,Y)=(gq,,Y ., R)
F(q1) ={q2,Y,L)
8{q..Y)=(q,,Y,L)
8(44,0)=(q,,0,L)
8(g4,X)={(q,,X,R)
§(q0,.Y)=(q4,Y . R}
5(gs,¥)=(g:.Y . R}

6(93’3):(4'4»8:‘}2)
The transitions can also be represented using tabular form as shown below.

Tape Symbols ()
0 1 X Y

o (9, X, R) = (g3, ¥, B} =

@ @0R) | (@rD g, Y, R -
9 (g4,0,L) - {g:. Y, 1) -

93 T i (an Y, R) (g4, B 4]

% 4 . 2 §

The transition table shown above can be represented as transition diagram as shown below :

Y/YR YL
0/0.R

To accept the string :

The sequence of moves or computations (IDs) for the string 0011 made by the Turing machine
are shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

Initial ID

400011 - Xg,011 o= X 0g 11
Xg,0¥1 -~ g, X0¥1
Xgo0Y1 - XXqY1
XX¥q 1 b XYY
Xq, X7Y o XXg¥Y
XX¥gs¥ - XXYYqs
XXYYBq,
(Final ID})

Example 2 : Obtain a Turing machine to accept the language L (M) = { 0" 12" [n2 1}

Solution ; Note that n number of 0's are followed by n number of 1's which in tum are followed
by n number of 2's. In simple terms, the solution to this problem can be stated as follows :

Replace first n number of 0's by X's, next n number of 1's by Y's and next n number of 2's by
Z's. Consider the situation where in first two 0's are replaced by X's , next immediate two 1's are
replaced by Y's and next two 2's are replaced by Z's as shown in figure 1(@).

XX00YY11ZZ22 XXXOYY11ZZ22 XXX0YY112722

1 ¥)
qo q 4

® ®) ©

FIGURE 1 : Various Configurations
Now, with figure 1(a). a as the current configuration, let us design the Turing machine. In
state g, , if the next scanned symbol is 0 replace it by X, change the state to ¢, and move the
pointer towards right and the situation shown in figure 1(b) isobtained . The transition for this can
beof the form

5(g,,0)=(g1, &, R)

Instate ¢,, wehave to search for the leftmost 1. It is clear from figure 1(b) that, when we
are searching for the symbol 1, we may encounter the symbols 0 or Y. So, replace 0 by 0, Yby
Y and move the pointer towards right and remain in state g, only. The transitions for this can be
ofthe form §(g,,0)=(4,,0,R)

8(q:.¥)={q:,7.R)

FORMAL LANGUAGES AND AUTOMATA THEORY

The configuration shown in figure 1(c) is obtained. Instate g,,0n encountering 1 change the
state to g, replace 1 by Y and move the pointer towards right. The transition for this canbe of
the form

5(‘}'1 ,1)=(612>Y,R)
and the configuration shown in figure 2(2) is obtained

XXXOYYY1ZZ22 XXXOYYY1Z722
Ey 1
92 9

@) ©
FIGURE 2 : Various Configurations

Instate g,, we have to search for the leftmost 2. Itis clear from figure 2(a) that, when we
are searching for the symbol 2, we may encounter the symbols 1 or Z. So, replace 1 by 1, Zby
7 and move the pointer towards right and remain in state ¢, only and the configuration shownin .
figure 2(b) is obtained. The transitions for this can be of the form

8(g,,1)=(q,,1,R)
6(g92,2)=(q,,Z,R)

Instate ¢, , on encountering 2, change the state to ¢, , replace 2 by Z and move the pointer
towards left. The transition for this can be of the form

8(q,.2)=(g5,2,L)
and the configuration shown in figure 2(c) is obtained. Once the TM is instate g, , it means that
equal pumber of 0's, 1'sand 2's are replaced by equal number of X's, Y's and Z's respectively.
At this point, next we have to search for the rightmost X to get leftmost 0. During this process, it

is clear from figure 2(c) that the symbolssuch as Z's, 1,8, Y's, 0's and X are scanned respectively
one after the other. So, replace Z by Z,1by 1, Yby Y, O by 0, move the pointer towards left and

stay in state g, only. The transitions for this can be ofthe form
6(g5,2)=(45,Z,L)
8{(g5.1)=(q5.,L)
8{(gs.¥)=(g;,¥ L)
8(¢5.0)=(g5,0,L)
Only on encountering X, replace X by X, change the state to g, and move the pointer
towards right to get leftmost 0. The transition for this can be of the form
5(93»X)=(‘10sX‘R)

FORMAL LANGUAGES AND AUTOMATA THEORY

All the steps shown above are repeated till the following configuration is obtained.
XXXXYYYYZZZZ

1
o
In state g, , if the input symbol is Y, it means that there are no 0's . If there are no 0's we
should see that there are no 1's also. For this to happen change the state to g, replace YbyY
and move the pointer towards right. The transition for this can be of the form
8(g0.¥)=(44.Y :R)
In state g, search for only Y's, replace Y by Y, remain in state g, only and move the pointer
towards right. The transition for this can be of the form
5(q .Y)=(q4,¥,R)
Instate ¢, ,if we encounter Z, it means that thereareno 1's and so we should see that there

~ areno 2's and only Z's should be present. So, on scanning the first Z, change the state to ¢, ,
replace Z by Z and move the pointer towards right. The transition for this can be of the form
8(q4:2)=(q5.2,R)
But, instate ¢, only Z's should be there and no more 2's. So, as long as the scanned symbol
is Z, remain in state g, , replace Z by Z and move the pointer towards right. But, once blank

symbol B is encountered change the state fo ¢,, replace B by B and move the pointer towards
right and say that the input string is accepted by the machine, The transitions for this can be of the
form 5(g5.Z)=(g5,Z,R)
5(q5.8)=(q¢.B,R)

whete g, is the final state.
So, the TM to recognize the language Z = { 0"1"2"}n 21} isgivenby
M = (Q’E> Faé sq()sBsF)
where
0 =1¢0:91:92:93:94>95+6} > z={0,12}
r={0,1,2X %, Z B}; gq,istheinitial state
B isblank character ; F={ ¢, }isthe final state
& is shown below using the transition table.

FORMAL LANGUAGES AND AUTOMATA THEORY

T

Y

4, g,s LR
g; g, YR
q, g, LR
4 g,,2.L |q,, YL
4 9..LR g, YR
4 VRVA S

9
The transition diagram for this can be of the form

YIY, R ZZR
R R

Example 3 : Obtaina TMtoacceptthelanguage L = {w|w e (0+1)*} containing the substring 001.

Solution : The DFA which accepts the language consisting of strings of O's and 1's havingasub
string 001 is shown below :

The transition table for the DFA is shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

0 1

13 9 ()

9, A ‘D

4 4 4

QQ qJ q3

We have seen thatany fanguage which is accepted by a DFA is regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input stringinonly
one direction (unlike the previous examples, where the read - write header was moving in both
the directions), For each scanned input symbol either O or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by O and 1 by 1 and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same (the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of 0's and 1's with a substring 001 is shown
below:

0 1 B
g, q,,;0.R 7,, LR -
4, qz,O,‘R 4.» 1, R -
4, 4,0, R g,s LR -
q, q,,0,R q,. LR

9
The TMis given by

M x(Qsz;ra&’qa;BaF)
where

0=1{4, 4,:9:»95> 43> L={0,5
T={0,1}; §- isdefined already

q, isthe initial state; B blank character
F={ g, }isthe final state

The transition diagram for this is shown below.

FORMAL LANGUAGES AND AUTOMATA THEORY

1R
V1R O/OR goR

- A
: 010, 0/0. m.R B’B‘R
/LR

Example 4 : Obtaina Turing machine to accept the language containing strings of 0's
and 's ending with 011,

Solution : The DFA which accepts the language cousisting of strings of0's and 1's ending
with the string 001 is shown below :

The transition table for the DFA is shownbelow :

5 0
o 4 4,

q| ql q2

9> 9 9gs
9. 4 4,

We have seen that any language which is accepted by a DFA is regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol (either 0 or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by O and 1 by 1 and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same (the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of ('s and 1's ending with a substring 001 is
shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

S 0

% q,:0.R
9, q,,0,R
4; g,,0.R
q, q,,0,R

94 2

The TMisgivenby M =(0Q.2.1.5.94,8,F)
where

0=1{4 4%:+8, } > Z=10,1} ; T={0,1}
§ — isdefined already
g, istheinitial state ; B doesnotappear
F={ g, }isthefinal state

The transition diagram for this is shown below:

/1, OOR

Example 5: Obtain a Turing machine to accept the language
L={wwis evenand £= {a,b}}
Solution :

The DFA to accept the language consisting of even number of characters is shown below.

ab

@@

a,b

FORMAL LANGUAGES AND AUTOMATA THEORY

The transition table for the DFA is shown below :

a b
9 4 4

q, 9, 9o

We have seen that any language which is accepted by aDFAis regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol (cither a or b), in whichever state the DFA was in,
"TM also enters into the same states on same input symbols, replacing a by aand b by band the
read - write head moves towards right. So, the transition table for DFAand TM remains same
(the format may be different). So, the transition table for TM to recognize the language consisting
of a's and b's having even number of symbols is shown below :

8 a b B

4, g, R g5, R g,-B,R

4, g, &R g, R -

L9 % i
The TM s given by

M =(Q,2,1,8,94,B.F)
where
QE{ Gos 4 }; Z={a b} ; I'={g, b}
5 - isdefined already ; ¢, istheinitial state
B does notappear ; F= { g, } isthe final state

The transition diagram of TM is given by

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 6 : Obtaina Turing machine fo accepta palindrome consisting of &'s and b's of any length.
Solution : Letus assume that the first symbol on the tape is blank character B and is followed
by the string which in turn ends with blank character B. Now, we have to design a Turing machine
which accepts the string, provided the string is a palindrome, For the string to be a palindrome,
the first and the last character should be same, The second character and last but one character
in the string should be same and so on. The procedure to accept only string of palindromes is
shown below. Let g0 be the start state of Turing machine.

Step 1 : Move theread - write head to point to the first character of the string. The transition
for this can be of the form 5(94.8)=(g,.B,R)
Step 2: Instate g, , if the first character isthe symbol a, replace it by B and change the state
1o ¢, and move the pointer towards right, The transition for this can be of the form
6(q1,0)=(q,,8,R)
Now , we move the read - write head to point to the last symbol of the string and the last

symbol should be a . The symbols scanned during this process are a's , b's and B. Replace aby
a, bby b and move the pointer towards right. The transitions defined for this can be of the form

6(q,a)=(q,,a,R)
6(g,.6)=(q,.0.R)

But, once the symbol B is encountered, change the state to ¢, , replace B by B and move the
pointer towards left. The transition defined for this can be of the form

6(q,2,B)=(93,B,L)

Instate ¢, , the read - write head points to the last character of the string. Ifthe last character
isa, then change the state to ¢, , replace a by B and move the pointer towards left. The transitions
defined for this can be of the form

6(g3,a)=(q4,8,L)

At this point, we know that the first character is a and last character is also a. Now, reset the
read - write head to point to the first non blank character as shown in step5.

Instate g, ,if the last character is B (blank character), it means that the given string is an odd
palindrome. So, replace B by B change the state to ¢, and move the pointer towards right. The

transition for this can be of the form
’ 6(q1,8)=(q;,B.R)
Step 3 : Ifthe first character is the symbol b, replace it by B and change the state from ¢, to ¢,
and move the pointer towards right. The transition for this can be of the form
5(g1,0)=(q5,B,R)

FORMAL LANGUAGES AND AUTOMATA THEORY

Now, we move the read - write head to point to the last symbol of the string and the last
symbol should be b. The symbols scanned during this process are a's,b'sand B. Replaceaby a,
b by band move the pointer towards right. The transitions defined for this can of the form

g(qua)z(QDasR)
5(gs,b)=(g5,0,R)

But, once the symbol B is encountered, change the state to ¢, , replace Bby B and move
the pointer towards left. The transition defined for this can be of the form

8(qs5,B)=(q¢,B.L)

In state g, , the read - write head points to the last character of the string,. If'the last character
isb, then change the state to g,., replace b by B and move the pointer towards left. The transitions
defined for this can be of the form

s (qﬁ’b)m(q‘thL)

At this point, we know that the first characier isb and last character is also b. Now, reset the

read - write head to point to the first non blank character as shown in step 5.

Instate g, , Ifthe Jast character is B (blank character), it means that the given string is an
odd palindrome. So, replace B by B, change the state to ¢, and move the pointer towards right.
The transition for this can be of the form

» 5(q¢-B)=(q,B,R)
Step4: In state g,, ifthe first symbol is blank character (B), the given string is even palindrome
and so change the state to ¢, , replace Bby B and move the read - write head towards right. The
transition for this can be of the form
8(q:,,B)=(q,.8,R)

Step 5: Resettheread - write head to point to the first non blank character. This canbe done
_ asshown below.

If the first symbol of the string is a, step 2 is performed and if the first symbol of the string is
b, step 3 is performed. After completion of step 2 or step 3, itis clear that the first symbol and the

Jast symbol mateh and the machine is currently in state g, . Now, wehave toreset the read - write
head to point to the first nonblank character in the string by repeatedly moving the head towards
left and remain in state ¢, . During this process, the symbols encountered maybeaorborB
(blank character). Replace a by a, b by b and move the pointer towards left. The transitions
defined for this can be of the form 5(q4,a)=(g4,a,L)

5(‘14yb)=(q4sva)

FORMAL LANGUAGES AND AUTOMATA THEORY

But, if the symbol B is encountered , change the state to ¢, , replace B by B and move the pointer
towards right. the transition defined for this can be of the form

6(q4,8)=(q1.B,R)
After resetting the read - write head to the first non - blank character, repeat through step 1.
So, the TM toaccept strings of palindromesover { a,b }isgivenby i =(Q, £, &, G4,B.F)

where Q= {q,,9,,4,:9,: 9,295,954, } 5 T={a, b} ; T={ab B}; g, istheinitial state
Bisthe blank character; F={ ¢, }; § is shown below using the transition table

T

é b B

% ¥ 758, R
4 9,.B,R q,-B,R
9, g,-b,R q,,B,L
4, - 7,-B., R
q. v B g,,B,R
q, g,,bR g, B, L
qs ¥ q.,>B,L 4,,B,R

9, = = -
The transition diagram to accept palindromes over { a, b }is given by

The reader can trace the moves made by the machine for the strings abba, aba and aaba and is
left as an exercise.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 7 : Construct a Turing machine which accepts the language of aba over Z={a,b}.

Solution : ThisTMisonly for L= { aba}
We will assume that on the input tape the string 'aba’ is placed like this

NINEE
2

‘The tape head will read out the sequence upto the B character if aba' is readout the TM will
halt after reading B.

{naR) - {(b.b.R} (24 R)

(B,B,5)

The triplet along the edge written is (input read, output to be printed, direction)
Let us take the transition between start stateand g, is(a, a, R) that is the current symbol

read from the tape is a then as a output a only has to be printed on the tape and then move the
tape head to the right. The tape will look like this

Again the transition between ¢, and ¢, is (b, b, R). That means read b, print b and move
right. Note that as tape head is moving ahead the states are getting changed.

[« o]a]® |B

The TM will accept the language when it reaches to halt state. Halt state is always aaccept
state for any TM. Hence the transition between ¢, and haltis (B, B, S). This meansread B, print
B and stay there or there is no move left or right. Eventhough we write (B, B, L) or (B, B, R)
it is equally correct. Because after all the complete input is already recognized and now we
simply want to enter into a accept state or final state. Note that for invalid inputs such as abb or
ab ot bab there is either no path reaching to final state and for such inputs the TM gets
stucked in between. This indicates that these all invalid inputs can not be recognized by our TM.

The same TM can be represented by another method of transition table

FORMAL LANGUAGES AND AUTOMATA THEORY

a b
Staﬂ (q, ¥l R} -

4, % (4,,6,R)

4 (Q:;5a, R) e =

g, - (HALT, B, S)
HALT - .

Inthe given transition table, we write the triplet in eachrowas :
(Next state, output to be printed, direction)
Thus TM can be represented by any of these methods.

Example 8 ; Design a TM that recognizes the set L= {0 1"|n > 0}.

Solution : Here the TM checks for each one whether two 0's are present in the left side. If it
match then only it halts and accept the string.

The transition graph of the TM is,

FIGURE : Turing Machine for the given language L= {0*1'{n2 0}

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 11 : What does the Turing Machine described by the 5 - tuplesb,
(‘Io 30’ s al? R);(‘Io '.js Q; :0,7'),(% ’ B’ QZ !B‘! R) ¥

(4,.0,4,,0, R), (q,,1,4,,), R) and (g4,,B.4,,B,R) Dowhen given a bit string
as input ?

Solution : The transition diagram of the TM is,

O/LR

FIGURE : Transition Diagram for the given TM
The TM here reads an input and starts inverting 0's to 1's and 1'sto O's till the first L.
After ithas inverted the first 1, it read the input symbol and keeps it as it is till the next 1.
After encountering the 1 it starts repeating the cycle by inverting the symbol till next 1. It halts
when it encounters a blank symbol.

7.4 COMPUTABLE FUNCTIONS

A Turing machine is a language acceptor which checks whether a string x isaccepted by a
Janguage L. In addition to that it may be viewed as computer which performs computations of
functions from integers to integers. In traditional approach an integer is represented in unary, an
integer ;> ¢ isrepresented by the string ¢ .

Example 1 : 2 is represented as o2 . If a function has k arguments, i, iy,.......J; , then these

integers are initially placed on the tape separated by 1's,a5 010 2 1 10% .

If the TM halts (whether in or not in an accepting state) with a tape consisting of 's for some m,
thenwe say that £(i,, iy,......i) = m, where fis the function of k arguments computed by this
Turing machine.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 100

8ga) = (445 B, 1)

8(g4,0) = (g4, 0, L)

8(44,0) = (g5, 0, R)
Ifin state ¢, aB is encountered before a 0, we have situation (i) described above. Enter state
g,and move left, changing all 1's to B 's until encountering a'B'. This Bis changed backtoal,
state g, is entered, and M halts.
6. 3(qq,1) = (g5, B, R)

3(g5,0) = (gs, B, R)

(g5, 1) = (g5, B, R)
. 8(g5,B) = (g4, B, R)
Ifin state g, 21 is encountered instead of a 0, the first block of 0's has been exhausted, asin
situation (i) above. M enters state g, to erase the restof the tape, then enters g, and halts.

Example 4 : Designa TM which computes the addition of two bosit‘we integers.

Solution: LetTM M =(Q, {0, 1, #},8,5) computes the addition of two positive integers m
and n. It means, the computed function £(m, n') defined as follows:

man(lf mnz1)
0 (m=n=0)

J(m.n) x{

1 onthe tape separates both the numbers m and n. Following values are possible for m andn,
1. m=n=0 (#1#....istheinput),
2. m=0and n#0 { #10"# ----... isthe input),
3. mzx0andn=0 (#01% ... is the input), and
4. m=0and n20 (#0m10"# ... is the input)
Several techniques are possible for designing of M, some are as follows :
{a) M appends (writes) m after n and erases the m from the left end.

(b) M writes 0 in place of 1 and erases one zero from the right or leftend . This is possiblein
case of n 0 OF m=0 only. fm=0orn=0then 1 is replaced by #.

We use techniques (b) given above. M is shown in below figure.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 101

Lis replaced by ¢
inadvance

fa=0

Bince, 1 is replaced by 0 in
advance, so erase one D ifn =0

FIGURE : TM for addition of two positive integers

7.5 RECURSIVELY ENUMERABLE LANGUAGES

AlanguageLoverthealphabet 3, iscalledrecursively emumerableifthereisa TM Mihatacceptevery wond
inL and either rejects(crashes) or loops for every word inlanguage L the complement of L.
Accept(M)=L
Reject (M) + Loop M) =L’
When TM M is still ranning on some input of recursively enumerable langnages) we can never
tell whether M will eventually accept if we let it run for long time or M will run forever (in loop).

Example : Consider alanguage(a+b)*bb(a+b)*.

T™ for th]S Ianguage is 4 (b,b,R) (8,8 R)

T (b, b, R) (';\ 3 '@

(a,2,R)

FIGURE : Turing Machine for(a+b)*bb(a+b)*

Here the inputs are of three types.

1. All words with bb = accepts (M) as soon as TM sees two consecutive b's it halts.

2. Allstrings without bb butendinginb = rejects (M). When TM sees a single b, it enters
state2. If the string is ending with b, TM will halt at state 2 which is not accepting state.
Hence it is rejected.

. All strings without bb ending in ‘a’ or blank 'B'=loop (M) here when the TM seeslastait
enters state 1. In this state on blank symbol it loops forever.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 102

Recursive Language

Alanguage L over the alphabet 5 is called recursive if there is a TM M that accepts every word
inL and rejects every wordinL' 1. e.,

accept (M)=L
reject (M) =L’

loop (M) = 4.

Example :Consideralanguageb(a+b)¥ . Itisrepresented by TM as

(sut)—222)

FIGURE : Turing Machine forb(a+b)*

This TM accepts all words beginning with 'b' because it enters halt state and it rejects all words
beginning with a because it remains in start state which is not accepting state.

A language accepted by a TM is said to be recursively enumerable languages. The subclass of

recursively enumberable sets (1. €) are those languages of this class are said to be recursive sets
orrecursive language.

7.6 CHURCH'S HYPOTHESIS

According tochurch's hypothesis, all the fumctions which can be defined by buman beings can be
computed by Turing machine. The Turing machine is believed to be ultimate computing machine.
The church's original statement was slightly different because he gave his thesis before machines
were actually developed. He said that any machine that can do certain list of operations will be
able to perform ail algorithms. TM can perform what church asked, so they are possibly the

- machines which church deseribed,

Churtch tied both recursive functions and computable finctions together, Every partial recursive
function is computable on TM. Computer models such as RAM also give rise to partial recursive
functions. So they can be simulated on TM which confirms the validity of churches hypothesis.

Important of church's hypothesis is as follows .

FORMAL LANGUAGES AND AUTOMATA THEORY Page 103

. First we will prove certain problems which cannot be solved using TM.

. Ifchurches thesis is true this implies that problems cannot be solved by any computer orany
programming languages we might every develop.

. Thus in studying the capabilities and iimitations of Tun'ng machines we are indeed studying
the fundamental capabilities and limitations of any computational device we might even
construct.

It provides a general principle for algorithmic computation and, while not provable, gives strong
evidence that no more powerful models can be found.

7.7 COUNTER MACHINE

Counter machine has the same structure as the multistack machine, but in place of each stack is

a counter. Counters hold any non negative integer, but we can only distinguish between zero and
Nnon Zero counters.

" Counter machines are off - line Turing machines whose storage tapes are serni - infinite, and .
whose tape alphabets contain only two symbols, Z and B (blank). Furthermore the symbol Z,
which serves as a bottom of stack marker, appears initially on the cell scanned by the tape head
and may never appear on any other cell. An integer i can be stored by moving the tape head i
cells to the right of Z. A stored number can be incremented or decremented by moving the tape
head rightor left. We can test whether a number is zero by checking whether Z is scanned by the
head, but we cannot directly test whether two numbers are equal.

(o] Restonty e | 5]

Finite
Control

tzlslal 1\ iB\lfif,l...

BDO0E00DE

FIGURE : Counter Machine

FORMAL LANGUAGES AND AUTOMATA THEORY Page 104

¢ and § are customarily used for end markers on the input. Here Z is the non blank symbol on

each tape. An instantaneous description of a counter machine can be described by the state, the
input tape contents, the position of the input head, and the distance of the storage heads from the
symbol Z (shown here as d, and ,). We call these distances the counts on the tapes. The
counter machine can only store a count an each tape and tell if that count is zero.

Power of Counter Machines

- Bvery language accepted by a counter Machine is recursively enumerable.
- Every language accepted by a one - counter machine is a CFL so a one - counter machine
is a special case of one - stack machine i. ¢., aPDA

7.8 TYPES OF TURING MACHINES

Various types of Turing Machines are :

i Withmultiple tapes.

il 'With one tape but multiple heads.

iil. Withtwo dimensional tapes.

iv. Nondeterministic Turing machines. '
It is observed that computationally all these Turing Machines are equally powerful. That means
one type can compute the same that other can. However, the efficiency of computation may
vary.
1. Turing machine with Two - Way Infinite Tape :
Thisis a TM that have one finite control and one tape which extends mﬁmtely in both directions,

Accept/Reject
e

II‘IIHIIHHI

tape

FIGURE : TM with infinite Tape

Tt turns out that this type of Turing machines are as poWerﬁﬂ as one tape Turing machines whose
tape has aleftend.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 105

. Multiple Turing Machines :

Einite Accept/Reject
control

]
faoﬂ:Im.—_IE
we2 T 1 1111

wes [1 1] 11
FIGURE : Multiple Turing Machines

Amultiple Turing machine consists of a finite control with k tape heads and k tapes, each tape is
infinite in both directions. On a single move depending on the state of the finite control and the
symbol scanned by each of the tape heads, the machine can

1. Changestate.

2. Printa new symbo! on each of the cells scanned by its tape heads.

3. Moveeach ofits tape heads, independently, one cell to the left or right orkeep it stationary.

Initially, the input appears on the first tape and the other tapes are blank.
3. Nondeterministic Turing Machines :

A nondeterministic Turing machine is a device with a finite control and a single, one way infinite
tape. For a given state and tape symbol scanned by the tape head, the machine has a finite
number of choices for the next move, Each choice consists of a new state, a tape symbol to print,
and a direction of head motion. Note that the non deterministic TM is not permitted to make a
move in which the next state is selected from one choice, and the symbol printed and/ or direction
of head motion are selected from other choices, The non deterministic TM accepts its input if any
sequence of choices of moves leads to an accepting state.

As with the finite automaton, the addition of nondeterminism to the Turing machine does not
allow the device to accept new languages.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 106

4. Multidimensional Turing Machines :

FIGURE : Multidimensional Turing Machine

The multidimensional Turing machine has the usual finite control, but the tape consists of a
k - dimensional array of cells infinite in all 2k directions, for some fixed k. Depending on the state and
symbol scanned, the device changes state, prints a new symbol, and moves its tape head in one'of 2k
directions, either positively or negatively, along one of the k axes. Initially, the input is along one axis, and
the head is at the left end of the input.At any time, only a finite number of rows in any dimension
contains nonblank symbols, and these rows each have only a finite number of nonblank symbols
5. Multihead Turing Machines : ;

wout | pe | AcceetReiCH
controt

head 1 head 1
head 2

LTI IITIT]
tape

FIGURE : Muitihead Turing Machine

Ak - head Turing machine has some fixed number, k, of heads. The heads are numbered 1 through
k, and a move of the TM depends on the staie and on the symbol scanned by each head. In one
move, the heads may each move independently left, right or remain stationary.

6. Off - Line Turing Machines : ; ’

Finite
Control

CrITVid
J

Pl
o,
FIGURE : Off - lihe Turing Machine

FORMAL LANGUAGES AND AUTOMATA THEORY Page 10
age 107

