ESPM UNIT - 111

Model Based Software Architectures: A Management Perspective and Technical Perspective.
Work Flows of the Process: Software Process Workflows, Iteration Workflows.
Checkpoints of the Process: Major Mile Stones, Minor Milestones, Periodic Status Assessments.

ARCHITECTURE: A MANAGEMENT PERSPECTIVE

» The most critical technical product of a software project is its architecture: the infrastructure, control and date
interfaces that permit software components to co-operate as a system and software designers to co-operate
efficiently as a tem. When the communications media include multiple languages and inter group literacy varies, the
communications problem can become extremely complex and even unsolvable. If a software development team is to
be successful, the inter project communications, as captured in the software architecture, must be both accurate and
precise.

» Froma management perspective, there are three difference aspects of architecture.

] An architecture (the intangible design concept) is the design of a software system this includes all
engineering necessary to specify a complete bill of materials.

e An architecture baseline (the tangible artifacts) is a slice of information across the engineering artifact sets
sufficient to satisfy all stakeholders that the vision (function and quality) can be achieved within the
parameters of the business case (cost, profit, time, technology and people).

* An architecture description (a human-readable representation of an architecture, which is one of the
components of an architecture baseline) is an organized subset of information extracted form the design set
model(s). The architecture description communicates how the intangible concept is realized in the tangible
artifacts.

The importance of software architecture and its close linkage with modern software development processes can be

summarized as follows:

e Achieving stable software architecture represents a significant project milestone at which the critical make/buy
decisions should have been resolved.
e Architecture representations provide a basis for balancing the trade-offs between the problem space

(requirements and constraints) and the solution space (the operational product).

e The architecture and process encapsulate many of the important (high-payoff or high-risk) communications
among individuals, teams, organizations and stakeholders.

e Poor architectures and immature processes are often given as reasons for project failures.

e A mature process, an understanding of the primary requirements, and a demonstrable architecture are important
prerequisites fro predictable planning.

* Architecture development and process definition are the intellectual steps that map the problem to a solution
without violating the constraints; they require human innovation and cannot be automated.

ARCHITECTURE: ATECHNICAL PERSPECTIVE

> An architecture framework is defined in the terms of views that are abstractions of the UML models in the design
set. The design model includes the full breadth and depth of information. An architecture view is an abstraction of
the design model; it contains only the architecturally significant information. Most real-world systems require four
views: design, process, component and deployment. The purposes of these views are as follows:
¢ Design: Describes architecturally significant structures and functions of the design model.
e Process: Describes concurrency and control thread relationship among the design, component and
deployment views.
e Component: Describes the structure of the implementation set.
o Deployment: Describes the structures of the deploy.
The following Figure Summarizes the artifacts of the design set, including the architecture views and architecture
description:

31

Yy -
The requiremeants sel may
i luche LERL miodels
describing the proolenm

! space.

| Assguirerments D-Es..ign lmplsemaretation Due-plny-men!

| The deskgn aet includas aill
UNL design modeals

] deacribing the solution

| | II Space.

The design. process, and |
w=2s case modals provide
for wisualizaton of the
. lkogical and behavicral
_— aspects of e desigrn.
B v Tha covnpormatd rmocks)
u‘;.,ﬁ;u provides for visualizabion of
—_— the implemaniation sat.

—_— e S — The alaploprriant mae

| - _‘—p — S e —— provides for visualizetson o
J Dismior m: E,q:-rnp-:rrﬁl W Chiodry mgsnit The deployment SEe1.

— o i |

e e) |

Drapesnding on ils complaxity, a sysiam may rneguire several
modeds or partibons of a single musded.

I Architecture Description I

[| : D urmasal
An archilecturse is describad through several vigws, = | Diesign wisw
wihich are extrects of Sesign models that capiure the [——8 Process Wi
significant struciures, collaborations, and behaviors. - Use case view
— 1 ” T - Comporssnt view

_i

Diaploy rment wisw]
Crthear wiews (oplicmnal)
Crtfwer miabarial:

= Rationala

= Coomsirainks

Architecture, an organized and abstraocted vigy fnto the design models

The requirements model addresses the behavior of the system as seen by its end users, analysts, and testers. This view is
modeled statically using use case and class diagrams and dynamically using sequence, collaboration, state chart and
activity diagrams.

The use case view describes how the system™s critical (architecturally significant) use cases are realized by elements of
the design model. It is modeled statically using use case diagrams and dynamically using any of the UML behavioral
diagrams.

The design view describes the architecturally significant elements of the design model. This view, an abstraction of the
design model, addresses the basic structure and functionality of the solution. It is modeled statically using calls and
object diagrams and dynamically using any of the UML behavioral diagrams.

The process view addresses the run-time collaboration issues involved in executing the architecture on a distributed
deployment model, including the logical software network topology (allocation to process and threads of control), inter
process communication and state management. This view is modeled statically using deployment diagrams and
dynamically using any of the UML behavioral diagrams.

The component view describes the architecturally significant elements of the implementation set. This view, an
abstraction of the design model, addresses the software source code realization of the system from the perspective of the
project”s integrators and developers, especially with regard to releases and configuration management. It is modeled
statically using component diagrams and dynamically using any of the UML behavioral diagrams.

The deployment view addresses the executable realization of the system, including the allocation of logical processes in
the distribution view (the logical software topology) to physical resources of the deployment network (the physical
system topology). It is modeled statically using deployment diagrams and dynamically using any of the UML behavioral
diagrams.

Generally, an architecture baseline should including the following:
e Requirements: critical use cases system-level quality objectives and priority relationships among features and
qualities

¢ Design: names, attributes, structures, behaviors, groupings and relationships of significant classes and components
. 32

Implementation: source component inventory and bill of materials (number, name, purpose, cost) of all primitive
components

* Development: executable components sufficient to demonstrate the critical us cases and the risk associated with
achieving the system qualities.

SOFTWARE PROCESS WORKFLOWS

The term workflow is used to mean a thread of cohesive and mostly sequential activities; Workflows are mapped to
product artifacts. There are seven top-level workflows:

1. Management workflow: controlling the process and ensuring win conditions for all stakeholders.

2. Environment workflow: automating the process and evolving the maintenance environment.

3. Requirements workflow: analyzing the problem space and evolving the requirements artifacts.

4. Design workflow: modeling the solution and evolving the architecture and designartifacts.

5. Implementation workflow: programming components & evolving the implementation and deployment artifacts.
6. Assessment workflow: assessing the trends in process and product quality.

7. Deployment workflow: transitioning the end products to the user.

Inception . Elaboration : Construction Transition

Management T t] 1 I I I f I]

Environment | r { T —1

Requirements |—|__‘—|—|

Design ——— 1 T Tt
Implementation , — —r—_ _I_|—_|——|
Assessment 1 I 11 T | I

Deployment : . - r T 1

Activity levels across the life-cycle phases

1. Architecture —first approach: Extensive requirements analysis, design, implementation and assessment activities are
performed before the construction phase when full-scale implementation is the focus.

2. Iterative life-cycle process: Some projects may require only one iteration in a phase, others may require several
iterations. The point is that the activities and artifacts of any given workflow may require more than one pass to achieve
results

3. Round-trip engineering: Raising the environment activities to a first-class workflow is critical. The environment is
the tangible embodiment of the projects process, methods and notations for producing the artifacts.

4. Demonstration-based approach: Implementation and assessment activities are initiated early in the life cycle,
reflecting the emphasis on constructing executable subsets of the evolving architecture.

33

The artifacts and life-cycle empbases associated with eackh workffoae

WORKFLOW

Management

ARTIFACTS

LIFE-CYCLE PHASE EMPHASE

Busaness case

Software development
plan

Status assessmentcs
Vision

Work breakdown
structure

Incepaion: Prepare business case and vision
Elaboranion: Plan developmens

Construcnion: Moaitor and control development
Transuwion: Monitor and control deplayment

Enviconment

Environment

Sofrware change order
database

Inception: Dehne development environment and
change management infrasrructere

Elaboranon: Install development environment
and esrablish change managemen: darabase

Constrwcaon: Maiotamn developonent environ-
meot and software change order database
Transition: Transinomn msinfenance cnyironment
and software change order database

neqﬁir.cmenl; et

Requn'ren-tenur Inception: Define operational concept
Relesse specibcations Elaboramon: Define architecture objectives
Visson Construcrion: Define iteration objecuves
Transition: Refine release aobjectives
Diesipgn Design sec Inception: Formulate architecrure concept
Archarecture descniprion Elaboranoa: Achieve architecture baseline
Construction: Design companents
'I:@leuon -_R_fﬁne aljg'hi!e(turc amnd components
Implementaton Implementation sec ln.ccptu;n: Suppb::-an:l-\;;::me_;noto—t;-p‘c; o
Deployment set Elabaramwon: Produce architecture baseline
Constructuon: Produce complete componensry
Transinion: Maingtain componenrs
Assessment Release specifications ln::mmn: Assess plans, vision, proconypes

Deployment

Release descoriptons
User manaal
Deployment sec

Elaborarion: Assess architecture
Comnstrucrion: Assess inmrerim releases
Transst»on: Assess prodduct relecases

Deployment set

Incepman: Analyze uscr commumity
Elaboratnion: Define user manual
Construction- Prepace transiciaon materials
Transition: Transition product 1O aser

ITERATION WORKFLOWS

Iteration consists of a loosely sequential set of activities in various proportions, depending on where the iteration is
located in the development cycle. Each iteration is defined in terms of a set of allocated usage scenarios.

Allocated Results from the = Up-to-date risk assessment

usage scenarios previous teration = Controlled baselimes of artifacts
= Demonstrable results
J ’L _L L — Requirements understanding
— Design features/performance
I rManagerment i — Plan credibility
l Requirements
[=

{ |
|

i
|
g

Results for the next
iterration

Thre coorkflore of arn iteratior

34

An individual iteration's workflow generally includes the following sequence:
= Management: iteration planning to determine the content of the release and develop the detailed plan for the
iteration; assignment of work packages, or tasks, to the development team.
= Environment: evolving the software change order database to reflect all new baselines and changes to existing
baselines for all product, test, and environment components
= Requirements: analyzing the baseline plan, the baseline architecture, and the baseline requirements set artifacts to
fully elaborate the use cases to be demonstrated at the end of this iteration and their evaluation criteria; updating any
requirements set artifacts to reflect changes necessitated by results of this iteration™s engineeringactivities.
= Design: Evolving the baseline architecture and the baseline design set artifacts to elaborate fully the design model
and test model components necessary to demonstrate against the evaluation criteria allocated to this iteration;
updating design set artifacts to reflect changes necessitated by the results of this iteration™s engineering activities.
= Implementation: developing or acquiring any new components, and enhancing or modifying any existing
components, to demonstrate the evaluation criteria allocated to this iteration; integrating and testing all new and
modified components with existing baselines (previous versions).
= Assessment: evaluating the results of the iteration, including compliance with the allocated evaluation criteria
and the quality of the current baselines; identifying any rework required and detemlining whether it should be
performed before deployment of this release or allocated to the next release; assessing results to improve the
basis of the subsequent iteration®s plan.
= Deployment: transitioning the release either to an external organization (such as a user, independent
verification and validation contractor, or regulatory agency) or to internal closure by conducting a post-mortem
so that lessons learned can be captured and reflected in the next iteration.

I MMarnagemeant [
|| Requirements]
L Design J
N lmplBl‘l"lBl‘ltaTi-Dl‘lr I
imception and Elaboration Phases | Assaessmeaent IJ

i Dreprloy rmeant]

I Planmnagerment

| Reguirerments |

Deasign]

[Implermentation]

Ascsessmentdt r

I D eployrment |

Constructicon Phase |

| Manmnagerment

.I Reguirerments

| Dasign]

J Implermentation |

R | : AESSESSITIEnT
Transition Phase |

Deploynent]

Tteratior ermprbasis across the life cwvale

CHECKPOINTS OF THE PROCESS

Three types of joint management reviews are conducted throughout the process:

« Major Milestones: these system wide events are held ant the end of each development phase. They provide visibility
to system wide issues synchronize the management and engineering perspectives and verify that the aims of the
phase have been achieved.

« Minor Milestones: theses iteration-focused events are conducted to review the content of an iteration in detail and to
authorize continued work.

+ Status Assessments: These periodic events provide management with frequent and regular insight into the progress
being made.

35

Each of the four phases-inceptions, elaboration, construction and transition consists of one or more iterations
and concludes with a major milestone when a planned technical capability is produced in demonstrable form.

MAJOR MILESTONES

The four major milestones occur at the transition points between life-cycle phases. They can be used in many different
process models, including eth conventional waterfall model. In an iterative model, the major milestones are used to
achieve concurrence among all stakeholders on the current state of the project.

Customers: Schedule and budget estimates, feasibility, risk assessment, requirements understanding, progress,
product line compatibility.

Users: consistency with requirements and usage scenarios, potential for accommodating, growth, quality attributes.
Architects and systems engineers: product line compatibility, requirements changes, trade-off analyses,
completeness and consistency, balance among risk, quality and usability

Developers: sufficiency of requirements detail and usage scenario descriptions, frameworks for component selection
or development, resolution of development risk, product line compatibility, sufficiency of the development
environment.

Maintainers: sufficiency of product and documentation artifacts, understandability, interoperability with existing
systems, sufficiency of maintenance environment.

Others: possibly many other perspectives by stakeholders such as regulatory agencies, independent verification and
validation contractors, venture capital investors, subcontractors, associate contractors and sale and marketing teams.

Inception Elaboration Construction Transition |
Iltaration 1 neration 2 | Maration 3 teration 4 [naration & [naration 6 Raration 7|
Initial
Life-Cwycla Life-Cycle O peraticnal Product
Objectives Architecture apability Release
Milastone Milestione Milestone Milestone
Major ‘
Milestones Strategic focus on global concerns of the entire software project
AN -~ _ﬁ_‘ N, F o
_ AN M VAN FAN AN AN VAN
Minor
Milestones Tactical focus on local concerns of the current iteration
Stab LR o R o T - - I - ¢ T ¢ O - - S o B - -
us

Assessments Periodic synchronization of stakeholder expectations

A typical sequence of life-cycle checkpoints

The following Table summarizes the balance of information across them major milestones.

36

The gerneral status of plans, reguirerments, and products across the rrajor

rilestornes
SOLUTION SPACE
UNDERSTAMNDING PROGRESS
OF PROBLEMN SPACE (SOFTWARE
MILESTOMNES PLAMNS (REQUIREMENTS) PRODUCT)

Life-cycle
objecrives
milestone

Definition of
stakeholder
responsibilities
Low-fAdelity life-cycle
rlan

High-fidelity elabora-
tion phase plan

Baseline wision,
including growrth
vectors, quality
arttributes, and
priorities

Use case model

Diemonstration of at
least one feasible
architecrure

Make/buyfreuse
trade-offs

Initial design model

Life-cvele
architecture
milestone

High-fidelity con-
struction phase plan
{kill of marerials,
labor allocation)
Low-fdelity transi-
tion phase plan

Stable vision and use
case model
Evaluation criteria
for construction
releases, initial opera-
tonal capability

Dirafr user manual

Stable design set
Make/buyfreuse
decisions

Critical component
Protory pes

Initial
operational
capability
milestone

High-fidelity transi-
tion phase plan

Acceptance criteria
for producr release

Releasable user
manual

Stable implementation
ser

Crirical fearures and
core capabilities
Objecrive insight into
product gualities

Product
release
milesrone

Nexr-generation
product plan

Final user manual

Stable deploy ment set
Full features
Compliant gquality

Life-Cycle Objectives Milestone

The life-cycle objectives milestone occurs at tile end of the inception phase. The goal is to present to all stakeholders a
recommendation on how to proceed with development, including a plan, estimated cost and schedule and expected
benefits and cost savings. A successfully completed life-cycle objectives milestone will result in authorization from all
stakeholders to proceed with the elaboration phase.

Life-Cycle Architecture Milestone

The life-cycle architecture milestone occurs at the end of the elaboration phase. The primary goal is to demonstrate an
executable architecture to all stakeholders. The baseline architecture consists of both a human-readable representation
and a configuration-controlled set of software components captured in the engineering artifacts.

I Requirements
A. Use case model
B. Vision document (text, use cases)
C. Ewvaluation criteria for elaboration (text, scenarios)
. Architecture
Design view (object models)
Process view (if necessary, run-time layout, executable code structure)
Component view (subsystermn layout, make/buy/reuse component
identification)
Deployment view {target run-time layout, target executable code structure)
Use case view (tesl case structure, test result expectation)
1 Draft user manual
" nl. Sowrce and executable libraries
A, Product componants
B. Testcomponents
[C. Envircnment and tool componants

mo om»

Engineering artifacts available at the life-cvcle architecture milestone

37

l Presentation Agenda J
L. Scope and objectives
A, Demonstration overview
[N Requirements assessment
A, Project vision and use casas
B. Primary scenarios and evaluation criteria
. Architecture assessment
| A, Progress
1. Baseline architecture metrics (progress to date and basealine for
| measuring future architectural stability, scrap, and rework)
2. Developmeant metrics baseline astimate (for assessing future
1 progress)
| 3. Test meatrics baseline estimata (for assessing future progress of
the test team)
| B. Cruality
|- 1. Architectural features {demonstration capability summary vs.
evaluation criteria)
2. Perormance (demonstration capability summary vs. evaluation
| . criteria)
3. Exposed architectural risks and resolution plans
4_ Affordability and make/buyfreuse trade-offs
Construction phase plan assessment
A, Iteration content and use case allocation
B. Mext iteration(s) detailed plan and evaluation criteria
<. Elaboration phase cost'schedule performance
D. Construction phase resource plan and basis of estimate
Risk assessmeant

| v,

m

Demonstration Agenda

| K Evaluation criteria

L Architecture subset summary

. Demonstration environment summary

. Scripted demonstration scenarios

W Evaluation criteria results and follow-up items

Drefault agendas for the life-cycle architecture milestone

MINOR MILESTONES

= Minor milestones are sometimes called as inch-pebbs.
= Minor milestones mainly focus on local concerns of current iteration.
= These iterative focused events are used to review iterative content in a detailed manner & authorize continued work.
Minor Milestone in the life cycle of Iteration: The number of iteration specific milestones is dependent on the iteration
length and the content. A one month to six month iterative period requires only two minor milestones
a) Iteration Readiness review: This informal milestone is conducted at the start of each iteration to reviewthe
detailed iteration plan and evaluation criteria that have been allocated to this iteration.
b) Iteration Assessment Review: This informal milestone is conducted at the end of each iteration to assess the
degree to which the iteration achieved its objectives and satisfied its evaluation criteria, to review iteration results.

PERIODIC STATUS ASSESSMENTS

= Periodic status assessments are management reviews conducted at regular intervals (monthly, quarterly) to address
progress and quality indicators, ensure continuous attention to project dynamics, and maintain open communications
among all stakeholders.
= Periodic status assessments are crucial for focusing continuous attention on the evolving health of the project and its
dynamic priorities.
= Periodic status assessments serve as project snapshots. While the period may vary, the recurring event forces the
project history to be captured and documented. Status assessments provide the following:
a) A mechanismfor openly addressing, communicating and resolving management issues technical issues and
project risks.
b) Objective data derived directly from on-going activities and evolving product configurations
¢) A mechanism for disseminating process, progress, quality trends, practices, and experience information to and
from all stakeholders in an open forum.

38

Defaslt content of status assessmiernt reviews

TOPIC

CONTENT

Personnel

Staffing plan vs. actuals

Actritions, additions

Financial trends

Expendirure plan vs. actuals for the previous, current, and next major
milestones

Revenue forecasts

Top 10 risks

Issues and criticality resolution plans

Quantification (cost, time, quality} of exposure

Technical progress

Conhgurartion baseline schedules for major milestones
Sofrware management merrics and indicators
Current change trends

Test and gualiry assessments

Major milestone plans
and resules

Plan, schedule, and risks for the nexr major milestone

Passffail results for all acceprance criteria

Total praduct scope

Toral size, growth, and acceptance criteria perturbartions

39

	TRANSITIONING TO AN ITERATIVE PROCESS
	ESPM UNIT - III
	Work Flows of the Process: Software Process Workflows, Iteration Workflows.
	Checkpoints of the Process: Major Mile Stones, Minor Milestones, Periodic Status Assessments.
	ARCHITECTURE: A MANAGEMENT PERSPECTIVE
	ARCHITECTURE: A TECHNICAL PERSPECTIVE
	SOFTWARE PROCESS WORKFLOWS
	ITERATION WORKFLOWS
	CHECKPOINTS OF THE PROCESS
	MAJOR MILESTONES
	Life-Cycle Objectives Milestone
	Life-Cycle Architecture Milestone
	MINOR MILESTONES
	PERIODIC STATUS ASSESSMENTS

