
1

Unit – 1

[Introduction to Software Engineering]

1.Software Engineering :

The term is made of two words, software and engineering.

Software is more than just a program code. A program is an executable

code, which serves some computational purpose. Software is considered

to be collection of executable programming code, associated libraries and

documentations. Software, when made for a specific requirement is

called software product.

Engineering on the other hand, is all about developing products, using

well-defined, scientific principles and methods.

Software engineering is an engineering branch associated with

development of software product using well-defined scientific principles,

methods and procedures. The outcome of software engineering is an

efficient and reliable software product.

2

2.Software Engineering Body of Knowledge

 The Software Engineering Body of Knowledge (SWEBOK) is an international

standard ISO/IEC TR 19759:2005
[1]

 specifying a guide to the generally accepted

Software Engineering Body of Knowledge.

 The Guide to the Software Engineering Body of Knowledge (SWEBOK Guide) has

been created through cooperation among several professional bodies and members of

industry and is published by the IEEE Computer Society (IEEE).

 The standard can be accessed freely from the IEEE Computer Society.
[3]

 In late 2013,

SWEBOK V3 was approved for publication and released.
[4]

 In 2016, the IEEE

Computer Society kicked off the SWEBoK Evolution effort to develop future

iterations of the body of knowledge

3.THE EVOLVING ROLE OF SOFTWARE

Today, software takes on a dual role. It is a product and, at the same time, the vehicle for

delivering a product. As a product, it delivers the computing potential embodied by computer

hardware or, more broadly, a network of computers that are accessible by local hardware.

Whether it resides within a cellular phone or operates inside a mainframe computer, software

is an information transformer—producing, managing, acquiring, modifying, displaying, or

transmitting information that can be as simple as a single bit or as complex as a multimedia

presentation. As the vehicle used to deliver the product, software acts as the basis for the

control of the computer (operating systems), the communication of information (networks),

and the creation and control of other programs (software tools and environments). Software

delivers the most important product of our time—information.

Software transforms personal data (e.g., an individual’s financial transactions) so that the data

can be more useful in a local context; it manages business information to enhance

competitiveness; it provides a gateway to worldwide information networks (e.g., Internet) and

provides the means for acquiring information in all of its forms.

The role of computer software has undergone significant change over a time span of little

more than 50 years. Dramatic improvements in hardware performance, profound changes in

computing architectures, vast increases in memory and storage capacity, and a wide variety

of exotic input and output options have all precipitated more sophisticated and complex

computer-based systems.

The lone programmer of an earlier era has been replaced by a team of software specialists,

each focusing on one part of the technology required to deliver a complex application.

And yet, the same questions asked of the lone programmer are being asked when

modern computer-based systems are built:

1)Why does it take so long to get software finished?

https://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge#cite_note-1
https://en.wikipedia.org/wiki/IEEE_Computer_Society
https://en.wikipedia.org/wiki/IEEE
https://en.wikipedia.org/wiki/IEEE_Computer_Society
https://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge#cite_note-3
https://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge#cite_note-4

3

2)Why are development costs so high?

3)Why can't we find all the errors before we give the software to customers?

4)Why do we continue to have difficulty in measuring progress as software is being

developed?

4.Changing Nature of Software :

The nature of software has changed a lot over the years.

1.System software: Infrastructure software come under this category like compilers,

operating systems, editors, drivers, etc. Basically system software is a collection of programs

to provide service to other programs.

2. Real time software: These software are used to monitor, control and analyze real world

events as they occur. An example may be software required for weather forecasting. Such

software will gather and process the status of temperature, humidity and other environmental

parameters to forcast the weather.

3. Embedded software: This type of software is placed in “Read-Only- Memory (ROM)”of

the product and control the various functions of the product. The product could be an aircraft,

automobile, security system, signalling system, control unit of power plants, etc. The

embedded software handles hardware components and is also termed as intelligent software .

4. Business software : This is the largest application area. The software designed to process

business applications is called business software. Business software could be payroll, file

monitoring system, employee management, account management. It may also be a data

warehousing tool which helps us to take decisions based on available data. Management

information system, enterprise resource planning (ERP) and such other software are popular

examples of business software.

5. Personal computer software :The software used in personal computers are covered in

this category. Examples are word processors, computer graphics, multimedia and animating

tools, database management, computer games etc. This is a very upcoming area and many big

organisations are concentrating their effort here due to large customer base.

6. Artificial intelligence software: Artificial Intelligence software makes use of non

numerical algorithms to solve complex problems that are not amenable to computation or

straight forward analysis. Examples are expert systems, artificial neural network,signal

processing software etc.

7. Web based software: The software related to web applications come under this category.

Examples are CGI, HTML, Java, Perl, DHTML etc.

4

5.Software myths:

Software Myths : What is software myth in software engineering.

 The development of software requires dedication and understanding on the

developers' part. Many software problems arise due to myths that are formed during

the initial stages of software development. Software myths propagate false beliefs

and confusion in the minds of management, users and developers.

Managers, who own software development responsibility, are often under strain and

pressure to maintain a software budget, time constraints, improved quality, and many other

considerations. Common management myths are listed in Table

Management Myths

 The members of an organization
can acquire all-the information, they
require from a manual, which
contains standards, procedures, and
principles;

 Standards are often incomplete,
inadaptable, and outdated.

 Developers are often unaware of
all the established standards.

 Developers rarely follow all the
known standards because not all the
standards tend to decrease the
delivery time of software while
maintaining its quality.

 If the project is behind
schedule,increasing the number of
programmerscan reduce the time gap.

 Adding more manpower to the
project, which is already behind
schedule, further delays the project.

 New workers take longer to
learn about the project as compared
to those already working on the
project.

 If the project is outsourced to a
third party, the management can relax
and let the other firm develop
software for them.

 Outsourcing software to a third
party does not help the organization,
which is incompetent in managing
and controlling the software project
internally. The organization
invariably suffers when it out sources
the software project.

http://ecomputernotes.com/software-engineering/software-myths
http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

5

In most cases, users tend to believe myths about the software because software managers

and developers do not try to correct the false beliefs. These myths lead to false expectations

and ultimately develop dissatisfaction among the users. Common user myths are listed in

Table.

 Table User Myths

 Brief requirement stated in the
initial process is enough to start
development; detailed requirements
can be added at the later stages.

 Starting development with
incomplete and ambiguous
requirements often lead to software
failure. Instead, a complete and
formal description of requirements is
essential before starting development.

 Adding requirements at a later
stage often requires repeating the
entire development process.

 Software is flexible; hence
software requirement changes can be
added during any phase of the
development process.

 Incorporating change requests
earlier in the development process
costs lesser than those that occurs at
later stages. This is because
incorporating changes later may
require redesigning and extra
resources.

In the early days of software development, programming was viewed as an art, but

now software development has gradually become an engineering discipline.

However, developers still believe in some myths-. Some of the common developer

myths are listed in Table.

6

Table Developer Myths

 Software development is
considered complete when the
code is delivered.

 50% to 70% of all the
efforts are expended after the
software is delivered to the
user.

 The success of a software
project depends on the quality
of the product produced.

 The quality of programs
is not the only factor that
makes the project successful
instead the documentation and
software configuration also
playa crucial role.

 Software engineering
requires unnecessary
documentation, which slows
down the project.

 Software engineering is
about creating quality at every
level of the software project.
Proper documentation
enhances quality which results
in reducing the amount of
rework.

 The only product that is
delivered after the completion
of a project is the working
program(s).

 The deliverables of a
successful project includes not
only the working program but
also the documentation to
guide the users for using the
software.

 Software quality can be
assessed only after the
program is executed.

 The quality of software
can be measured during any
phase of development process
by applying some quality
assurance mechanism. One
such mechanism is formal
technical review that can be
effectively used during each
phase of development to
uncover certain errors

7

6.The software problem: Cost, schedule and quality, Scale and

change:

[Triple constraints of Project management: Cost, schedule and quality]

In the industrial-strength software domain, there are three basic forces at play—cost,

schedule, and quality. The software should be produced at reasonable cost, in a reasonable

time, and should be of good quality. These three parameters often drive and define a software

project.

Cost :

 Industrial-strength software is very expensive primarily due to the fact that software

development is extremely labor-intensive. To get an idea of the costs involved, let us

consider the current state of practice in the industry. Lines of code (LOC) or

thousands of lines of code (KLOC) delivered is by far the most commonly used

measure of software size in the industry. As the main cost of producing software is the

manpower employed, the cost of developing software is generally measured in terms

of person-months of effort spent in development. And productivity is frequently

measured in the industry in terms of LOC (or KLOC) per person-month.

The productivity in the software industry for writing fresh code generally ranges from

few hundred to about 1000+ LOC per person-month. This productivity is over the

entire development cycle, not just the coding task. Software companies often charge

the client for whom they are developing the software between $3000 - $15,000 per

person-month. With a productivity of 1000 LOC per person-month, it means that each

line of delivered code costs between $3 and $15! And even small projects can easily

end up with software of 50,000 LOC. With this productivity, such a software project

will cost between $150,000 and $750,000!

Schedule :

 Schedule is another important factor in many projects. Business trends are dictating

that the time to market of a product should be reduced; that is, the cycle time from

concept to delivery should be small. For software this means that it needs to be

developed faster, and within the specified time. Unfortunately, the history of software

is full of cases where projects have been substantially late.

 Clearly, therefore, reducing the cost and the cycle time for software development are

central goals of software engineering. Productivity in terms of output (KLOC) per

person-month can adequately capture both cost and schedule concerns. If productivity

is higher, it should be clear that the cost in terms of person-months will be lower (the

same work can now be done with fewer person-months). Similarly, if productivity is

higher, the potential of developing the software in less time improves—a team of

8

higher productivity will finish a job in less time than a same-size team with lower

productivity. (The actual time the project will take, of course, depends also on the

number of people allocated to the project.) Hence, pursuit of higher productivity is a

basic driving force behind software engineering and a major reason for using the

different tools and techniques.

Quality :

 Besides cost and schedule, the other major factor driving software engineering is

quality. Today, quality is one of the main mantras, and business strategies are

designed around it. Unfortunately, a large number of instances have occurred

regarding the unreliability of software—the software often does not do what it is

supposed to do or does something it is not supposed to do. Clearly, developing high-

quality software is another fundamental goal of software engineering. However, while

cost is generally well understood, the concept of quality in the context of software

needs further elaboration. The international standard on software product quality [55]

suggests that software quality comprises six main attributes, as shown in Figure 1.1.

 Figure 1.1: Software quality attributes.

These attributes can be defined as follows:

 Functionality. The capability to provide functions which meet stated and implied

needs when the software is used.

 Reliability. The capability to provide failure-free service.

 Usability. The capability to be understood, learned, and used.

 Efficiency. The capability to provide appropriate performance relative to the amount

of resources used.

 Maintainability. The capability to be modified for purposes of making corrections,

improvements, or adaptation.

 Portability. The capability to be adapted for different specified environments without

applying actions or means other than those provided for this purpose in the product.

Scale and Change :

Though cost, schedule, and quality are the main driving forces for a project in our problem

domain (of industry strength software), there are some other characteristics of the problem

domain that also influence the solution approaches employed. We focus on two such

characteristics—scale and change.

9

Scale :

 Most industrial-strength software systems tend to be large and complex, requiring tens

of thousands of lines of code. Sizes of some of the well-known software products are

given in An example will illustrate this point. Consider the problem of counting

people in a room versus taking a census of a country. Both are essentially counting

problems. But the methods used for counting people in a room will just not work

when taking a census. A different set of methods will have to be used for conducting

a census, and the census problem will require considerably more management,

organization, and validation, in addition to counting.

 Similarly, methods that one can use to develop programs of a few hundred lines

cannot be expected to work when software of a few hundred thousand lines needs to

be developed. A different set of methods must be used for developing large software.

 Any software project involves the use of engineering and project management. In

small projects, informal methods for development and management can be used.

However, for large projects, both have to be much more rigorous, as illustrated in

Figure 1.2. In other words, to successfully execute a project, a proper method for

engineering the system has to be employed and the project has to be tightly managed

to make sure that cost, schedule, and quality are under control. Large scale is a key

characteristic of the problem domain and the solution approaches should employ tools

and techniques that have the ability to build large software systems

Figure 1.2: The problem of scale.

10

Change :

 Change is another characteristic of the problem domain which the approaches for

development must handle. As the complete set of requirements for the system is

generally not known (often cannot be known at the start of the project) or stated, as

development proceeds and time passes, additional requirements are identified, which

need to be incorporated in the software being developed. This need for changes

requires that methods for development embrace change and accommodate it

efficiently. Change requests can be quite disruptive to a project, and if not handled

properly, can consume up to 30 to 40% of the development cost [14].

 As discussed above, software has to be changed even after it has been deployed.

Though traditionally changes in software during maintenance have been distinguished

from changes that occur while the development is taking place, these lines are

blurring, as fundamentally the changes in both of these scenarios are similar—existing

source code needs to be changed due to some changes in the requirements or due to

some defects that need to be removed.

 Overall, as the world changes faster, software has to change faster, even while under

development. Changes in requirements are therefore a characteristic of the problem

domain. In today’s world, approaches that cannot accept and accommodate change

are of little use—they can solve only those few problems that are change resistant.

7. Principles of Software Engineering :

Seven principles have been determined which form a reasonably independent

and complete set. These are:

(1) Manage using a phased life-cycle plan.

(2) Perform continuous validation.

(3) Maintain disciplined product control.

(4) Use modern programming practices.

(5) Maintain clear accountability for results.

(6) Use better and fewer people.

(7) Maintain a commitment to improve the process.

11

8.

12

13

14

9.Software Process
A software process (also knows as software methodology) is a set of related activities that

leads to the production of the software. These activities may involve the development of the

software from the scratch, or, modifying an existing system.

Any software process must include the following four activities:

1. Software specification (or requirements engineering): Define the main functionalities

 of the software and the constrains around them.

2. Software design and implementation: The software is to be designed and

 programmed.

3. Software verification and validation: The software must conforms to it’s

 specification and meets the customer needs.

4. Software evolution (software maintenance): The software is being modified to meet

 customer and market requirements changes.

In practice, they include sub-activities such as requirements validation, architectural design,

unit testing, …etc.

There are also supporting activities such as configuration and change management, quality

assurance, project management, user experience.

10.Software Process Framework:
A process framework establishes the foundation for a complete software process by

identifying a small number of framework activities that are applicable to all software

projects, regardless of size or complexity. It also includes a set of umbrella

activities that are applicable across the entire software process. Some most applicable

framework activities are described below.

http://www.onlineclassnotes.com/2016/04/what-is-software-process.html?ref=Content%20Body
http://www.onlineclassnotes.com/2016/04/what-is-software-process.html?ref=Content%20Body
http://www.onlineclassnotes.com/2013/01/describe-umbrella-activities.html?ref=Content%20Body
http://www.onlineclassnotes.com/2013/01/describe-umbrella-activities.html?ref=Content%20Body

15

11.Elements of software process:

They are different elements of software process.

1. Communication:
This activity involves heavy communication with customers and
other stakeholders in order to gather requirements and other
related activities.

2. Planning:
Here a plan to be followed will be created which will describe the technical
tasks to be conducted, risks, required resources, work schedule etc.

3. Modeling:
A model will be created to better understand the requirements and design
to achieve these requirements.

4. Construction:
Here the code will be generated and tested.

16

5.Deployment:
Here, a complete or partially complete version of the software is
represented to the customers to evaluate and they give feedbacks based
on the evaluation.

12.Q) Is software engineering applicable when WebApps are built? If so,

how might it be modified to accommodate the unique characteristics

of WebApps?

Ans)Yes,software engineering is applicable, when WebApps are

built because it is a layered technology and consists of Tools, Methods,

Process, and A quality focus.

13.Hardware characteristics are completely different from

software characteristics. Justify

Ans)Dif ferences be tween Hardware and Sof tware Deve lopm ent

o Software is easier to change than hardware. The cost of change is much higher

for hardware than for software.

o Software products evolve through multiple releases by adding new features

and re-writing existing logic to support the new features. Hardware products

consist of physical components that cannot be “refactored” after

manufacturing, and cannot add new capabilities that require hardware

changes.

o Designs for new hardware is often based upon earlier-generation products, but

commonly rely on next-generation components not yet present.

o Hardware designs are constrained by the need to incorporate standard parts.

o Specialized hardware components can have much longer lead times for

acquisition than is true for software.

o Hardware design is driven by architectural decisions. More of the architectural

work must be done up front compared to software products.

o The cost of development for software products is relatively flat over time.

However, the cost of hardware development rises rapidly towards the end of

the development cycle. Testing software commonly requires developing

thousands of test cases. Hardware testing involves far fewer tests.

17

o Software testing is done by specialized Quality Assurance (QA) engineers,

while hardware testing is commonly done by the engineers who are creating

the product.

o Hardware must be designed and tested to work over a range of time and

environmental conditions, which is not the case for software.

o Hardware development incorporates four parallel, synchronized projects:

 UNIT 1

 [QUESTIONS]

1. Explain about The evolving role of software.

2. How software changed from day to day.

 [or]

Explain about the changing nature of software.

 [or]

Explain about applications of software.[same answer for the any

of the question asked]

3. What are the common software myths? Explain.

4. What are the main Software problems during its development?

What are its major disadvantages?

 [The software problem: Cost, schedule and quality, Scale and

 Change. You can write about these when asked this question.]

18

5. What is software Engineering? Explain software Engineering

Book of Knowledge.

6. Explain the Principles of Software Engineering.

7. Explain software process. What are elements of software

process.

8. Hardware characteristics are completely different from

software characteristics. Justify.

9. Sketch the common framework for software process and

explain.

10. What are software components? Explain software

 Characteristics.

11. Explain the importance of software engineering.

