
 

 

 

 

 

 

 

 



 

 

 



 

 

 

 



 

 

 

 



 

 

 

 

 

 

 

 

 



An approach we could take is illustrated by the following diagram:  

 

It involves taking a piece of graph paper or dividing plain paper up into slots each of 

which can be identified with a particular mark value. The next step is to examine 

each mark, and, depending on its value, we place a star in the corresponding mark's 

slot. If we applied this step to all marks when the task was completed the number 

of stars associated with each slot would represent the mark's count for that 

particular mark. The method we have outlined is certainly a workable hand 

solution. In the method we have proposed it is not necessary to compare each 

mark with all possible marks' values. Instead, the value of a particular mark leads us 

directly to the particular slot that must be updated. This one-step procedure for 

each mark would certainly be very attractive if it could be carried across to the 

computer algorithm. It is at this point that we need to recognize that an array can 

be usefully employed in the solution to our problem. We can very easily set up an 

array with 101 locations, each location corresponding to a particular mark value. 

For example. 

 

If we store in each array location the count of the number of students that 

obtained that mark we will have the required solution to the problem (e.g. if 15 

students obtained the mark 57, then we will have the number 15 in location 57 

when all marks have been examined). Initially we can consider what happens when 



a particular mark is encountered. Suppose the current mark to be counted is 57. In 

using the array for counting we must at this stage add one to the count stored in 

location 57. For this step we can use the actual mark's value (i.e. 57) to reference 

the array location that we wish to update. That is, the mark's value can be 

employed as an array suffix. Because it is necessary to add one to the previous 

count in location 57, we will need a statement of the form:  

 

 

 

 



 

 

Notes on design  

1. Essentially n steps are required to generate the frequency histogram for a set of 

n marks.  

2. After i iterations the nth element in the a array will contain an integer 

representing the number of marks j encountered in the first i marks. This relation 

holds for all j in the range 0<j-c-100 and for all i in the range 1-s:i.s.n. On 

termination, when i= n, all array elements will reflect the appropriate marks' counts 

for the complete set. It follows from the definition of the for-loop that both loops 

terminate.  



3. The idea of indexing by value is important in many algorithms because of its 

efficiency.  

Applications 

 Statistical analyses. 

 

 

 

The maximum is that number which is greater than or equal to all other numbers in 
the set. This definition accommodates the fact that the maximum may not be 
unique. It also implies that the maximum is only defined for sets of one or more 
elements.  For example, 

 

 
When the first number appears on the screen we have no way of knowing whether 

 or not it is the maximum. In this situation the best that we can do is write it down  

as our temporary candidate for the maximum. Having made the decision to write down 

the first number we must now decide what to do when the second number appears 



 on the screen. Three situations are possible:  

1. the second number can be less than our temporary candidate for the maximum; 

2. the second number can be equal to our temporary candidate for the maximum;  

3. the second number can be greater than our temporary candidate for the 

maximum.  

If situations (1) or (2) apply our temporary candidate for the maximum is still valid 

and so there is no need to change it. In these circumstances we can simply go 

ahead and compare the third number with our temporary maximum which we will 

call max. However, if the second number is greater than our temporary max-imum, 

we must cross out our original temporary maximum and write down the second 

number as the new temporary maximum. We then move on and compare the third 

number with the new temporary maximum. The whole process will need to 

continue until all elements in the set have been examined. As larger values are 

encountered they assume the role of the temporary maximum. At the time when 

all numbers have been examined the temporary maximum that is written down is 

the maximum for the complete set. This strategy can form the basis of our 

computer algorithm. 

 Our initial proposal might therefore be:  

 

 

Algorithm description  

1. Establish an array a[1.. n] of n elements where n>= 1 

2. Set temporary maximum max to first array element.  



3. While less than n array elements have been considered do  

 (a) if next element greater than current maximum max then assign it to max.  

4. Return maximum max for the array of n elements. 

 

 

Notes on design  

1. The number of comparisons needed to find the maximum in an array of n 

elements is n-1.  

2. For all i in the range 1 ≤ i≤ n when i elements have been examined the variable 

max is greater than or equal to all elements in the range 1 to i. 

 

 



 

 

 

 



 

 

 

 

 

 



 

 

 



 

 

 

 

 



 

 

 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 

 

 



 

 

 

 



 

 

 

 

 

 



 

 

 

 



 

 

 

 

 



 

 

 



 

 


