INTRODUCTION

The array is a powerful tool that is widely used in computing. Arrays provide
for a very special way of storing or organizing data in a computer’s memory.
The power of the array is largely derived from the fact that it provides us with
a very simple and efficient way of referring to and performing computations
on collections of data that share some common attribute.

processing of arrays is simplified by using variables to specify suffixes. In
processing a particular array it does not matter what name we give the array

suffix—it is only the suffix value which determines which array loca-
tion is referenced (i.e. if the variablesi and j both have the value 49 then the
references a[i] and a[j] both reference the same array location which is
a[49]).

The concept of a one-dimensional array which we have been consider-
ing extends in a natural way to multidimensional arrays.

Arrays play an integral part in many computer algorithms. They sim-
plify the implementation of algorithms that must perform the same compu-
tations on collections of data. Furthermore, employment of arrays often

leads to implementations that are more efficient than they would otherwise
be.

The most important basic ways in which we change the contents of an
array location are by direct computation and assignment, by exchange of the
contents of two array locations, and by counting. In the algorithms which
follow we will examine a variety of basic array techniques and applications.

In more advanced computer applications arrays can be used to build
and simulate finite state automata.

Algorithm 4.1
ARRAY ORDER REVERSAL

Problem

Rearrange the elements in an array so that they appear in reverse order.

Algorithm development

The problem of reversing the order of an array of numbers appears to be
completely straightforward. Whilst this is essentially true, some care and
thought must go into implementing the algorithm.

We can start the design of this algorithm by careful examination of the
elements of an array before and after it has been reversed; for example,

1123145]|6/]|7 before reversal

716|514 (|13 (2|1 after reversal

What we observe from our diagram is that the first element ends up in
the last position. The second element ends up in the second last position and
so on. Carrying this process through we get the following set of exchanges:

[1
4

tn | e

NN

In terms of suffixes the exchanges are:

step [1] a[1]<==a[7]
step [2] al2]<=>al 6]
step [3] a[3]<=>a[5]
step [4] ald4]<=>a[4] there is no exchange here

6 |7 array a[l..n]

Examining the effects of these exchanges we discover that after step [3]
the array is completely reversed. We see that with each step the suffixes on
the left are increasing by one while at the same time the suffixes on the right
are decreasing by one. In setting up our algorithm we need a pair of suffixes
that model this increasing—decreasing behavior. Our increasing suffix can be
the variable i which is simply incremented by one with each step.

For our decreasing suffix we might try [n—i] since this decreases by 1
with each increase in i by 1. The problem with this suggestion is that when
i =1 we find that [n—{] is equal to n—1 rather than n as we require for our
exchange. We can correct this by adding 1. The suffix [n—i+1] can then be
used as our. decreasing suffix. With these suffixes we have

i n—i+l1

1 7-14+1=7
2 7-24+1=6
3 7-3+1=5
4 7-4+1=4

Each exchange (cf. algorithm 2.1) can be achieved by a mechanism of
the form

t .= a[l1];
ali] := a[n—i+1];
aln—i+1] :=t

the number of exchanges » to reverse the order of an array is always the
nearest integer that is less than or equal half the magnitude of n.

1 - ~ 1 a1 [1 1 1=

Algorithm description

1. Establish the array a[1..n] of n elements to be reversed.
2. Compute r the number of exchanges needed to reverse the array.
3. While there are still pairs of array elements to be exchanged
(a) exchange the i*" element with the [n—i+1]" element.
4. Return the reversed array.

The algorithm can be suitably implemented as a procedure that accepts
as input the array to be reversed and returns as output the reversed array.

Pascal implementation

procedure reverse (var a: nelements; n: integer);
var / {increasing index for array},

r {number of exchanges required}: integer;

t {temporary variable needed for exchange}: real;

begin {reverses an array of n elements}
{assert: n>0Aa[1]=al, a|2]=a2...a[n]=a(n)}
r:=ndiv2;
{invariant: 1=</=<|n/2|Aa[1]=aln), a[2]=aln -1)....,
alil=aln—i+1),
ali+1]=ali+1), aln—il=aln i), a[n-i+1]=ali), ..., a[n]=al}
for/:= 1tordo
begin {exchange next pair}
t := afil;
alil :=aln—-i+1];
aln—i+1]:=t
end

Notes on design

1. To reverse an array of n elements |n/2| exchanges are required.

2. There are r=|n/2| pairs of elements in an array of n elements. To
reverse an array of n elements r pairs of elements must be exchanged.
After the i*" iteration (for i in the range 1<i<r) the first i pairs of
elements have been interchanged. This relation remains invariant. The
i™" pair consists of the i element and the (n—i+1)" element. The
algorithm will terminate because with each iteration i is advanced by 1
so eventually r pairs will have been exchanged.

Applications

Vector and matrix processing.

Algorithm 4.2
ARRAY COUNTING OR HISTOGRAMMING

Problem

Given a set of n students’ examination marks (in the range 0 to 100) make a
count of the number of students that obtained each possible mark.

Algorithm development

we are required to do in this case is obtain the distribution of a set of marks.
This problem is typical of frequency counting problems. One approach we
could take is to set up 101 variables CO C1, C2, ..., C100 each corresponding
to a particular mark. The counting strategy we could then employ might be
as follows:

while less than » marks have been examined do
(a) get next mark m,

(b0) if m=0 then CO := C0+1;

(b1) if m=1 then C1 := Cl1+1;

(b2) if m=2then C2 := C2+1;

(b3) if m=3 then C3 := C3+1;

(b100) if m =100 then C100 := C100+1.

The difficulty with this approach is that we need to make 101 tests (only
one of which is successful) just to update the count for one particular mark.

Ll .1 Tr. .1 "

An approach we could take is illustrated by the following diagram:

* *
* *
* * * % *

* sk kR k%
ootk ekl sk

50 55 60

It involves taking a piece of graph paper or dividing plain paper up into slots each of
which can be identified with a particular mark value. The next step is to examine
each mark, and, depending on its value, we place a star in the corresponding mark's
slot. If we applied this step to all marks when the task was completed the number
of stars associated with each slot would represent the mark's count for that
particular mark. The method we have outlined is certainly a workable hand
solution. In the method we have proposed it is not necessary to compare each
mark with all possible marks' values. Instead, the value of a particular mark leads us
directly to the particular slot that must be updated. This one-step procedure for
each mark would certainly be very attractive if it could be carried across to the
computer algorithm. It is at this point that we need to recognize that an array can
be usefully employed in the solution to our problem. We can very easily set up an
array with 101 locations, each location corresponding to a particular mark value.

For example.
al0] a[1] a[100]
1 1 t
mark mark mark
0 1 e 100

If we store in each array location the count of the number of students that
obtained that mark we will have the required solution to the problem (e.g. if 15
students obtained the mark 57, then we will have the number 15 in location 57
when all marks have been examined). Initially we can consider what happens when

a particular mark is encountered. Suppose the current mark to be counted is 57. In
using the array for counting we must at this stage add one to the count stored in
location 57. For this step we can use the actual mark's value (i.e. 57) to reference
the array location that we wish to update. That is, the mark's value can be
employed as an array suffix. Because it is necessary to add one to the previous
count in location 57, we will need a statement of the form:

new count in location 57 := previous count in location 57+1

Since location a[57] must play both the “‘previous count” and “‘new count”
roles, we can write

al57] := a[57]+1
or for the general mark m we can write

alm] .= a[m]+1

Algorithm description

1. Prompt and read in n the number of marks to be processed.
2. Initialize all elements of the counting array &[0..100] to zero.
3. While there are still marks to be processed, repeatedly do

(a) read next mark m,

(b) add one to the count in location m in the counting array.
4. Write out the marks frequency count distribution.

Pascal implementation

program histogram (input, output);

var / {current number of marks processed},
m {current mark},
n {number of marks to be processed}: integer;
a. array [0..100] of integer;

begin {compute marks frequency distribution}
writeln {'enter number of marks n on a separate line followed by
marks');
readin (n);
for/ := 1 to 100 do a[/] := 0;
{assert: n >=0nall a[0..100] are set to 0}
l{invariant: when i marks read, for j in range 0=<;=<100, all a[/]
will represent the number of marks j in the first i read Ai =<n}
fori := 1ton do
begin {read next mark and update appropriate array elements}
read (m);
if eo/n (input) then readin;
lassert: m in range 0=<m =<100}
alm] := a[m]+1
end;
{assert: when n marks read, for j in range 0=<;=<100, all a[/]
will represent the number of marks j in the set}
for/ := 0 to 100 do
begin
write (a[7]);
if / mod 8 =0 then writeln
end

Notes on design

1. Essentially n steps are required to generate the frequency histogram for a set of
n marks.

2. After i iterations the nth element in the a array will contain an integer
representing the number of marks j encountered in the first i marks. This relation
holds for all j in the range 0<j-c-100 and for all i in the range 1-s:i.s.n. On
termination, when i= n, all array elements will reflect the appropriate marks' counts
for the complete set. It follows from the definition of the for-loop that both loops
terminate.

3. The idea of indexing by value is important in many algorithms because of its
efficiency.

Applications

Statistical analyses.

Algorithm 4.3
FINDING THE MAXIMUM NUMBER IN A SET

Problem

Find the maximum number in a set of n numbers.

Algorithm development

The maximum is that number which is greater than or equal to all other numbers in
the set. This definition accommodates the fact that the maximum may not be
unique. It also implies that the maximum is only defined for sets of one or more
elements. For example,

8({6|S5S|15|7(19(21|6]13

After studying this example we can conclude that all numbers need to be
examined to establish the maximum. A second conclusion is that comparison
of the relative magnitude of numbers must be made.

When the first number appears on the screen we have no way of knowing whether

or not it is the maximum. In this situation the best that we can do is write it down
as our temporary candidate for the maximum. Having made the decision to write down
the first number we must now decide what to do when the second number appears

on the screen. Three situations are possible:
1. the second number can be less than our temporary candidate for the maximum;
2. the second number can be equal to our temporary candidate for the maximum;

3. the second number can be greater than our temporary candidate for the
maximum.

If situations (1) or (2) apply our temporary candidate for the maximum is still valid
and so there is no need to change it. In these circumstances we can simply go
ahead and compare the third number with our temporary maximum which we will
call max. However, if the second number is greater than our temporary max-imum,
we must cross out our original temporary maximum and write down the second
number as the new temporary maximum. We then move on and compare the third
number with the new temporary maximum. The whole process will need to
continue until all elements in the set have been examined. As larger values are
encountered they assume the role of the temporary maximum. At the time when
all numbers have been examined the temporary maximum that is written down is
the maximum for the complete set. This strategy can form the basis of our
computer algorithm.

Our initial proposal might therefore be:

1. While all array elements not examined do
(a) if the current array element > temporary maximum then
update the temporary maximum.

Algorithm description
1. Establish an array a[1.. n] of n elements where n>=1

2. Set temporary maximum max to first array element.

3. While less than n array elements have been considered do
(a) if next element greater than current maximum max then assign it to max.

4. Return maximum max for the array of n elements.
Pascal implementation

function amax (a: nelements; n: integer): real;
var / {array index}: integer;
max {current maximumy}: real;

begin {find the maximum in an array of n numbers}
{assert: n>0}
I:=1;
max := a[i];
{invariant: max is maximum in a[1..i]\i=<n}
for/:=2ton do
if a[/]>max then max := a[/];
{assert: max is maximum in a[1..n]}
amax .= max
end

Notes on design

1. The number of comparisons needed to find the maximum in an array of n
elements is n-1.

2. For all i in the range 1 £ i< n when i elements have been examined the variable
max is greater than or equal to all elements in the range 1 toi.

Applications

Plotting, scaling, sorting.

Algorithm 4.4
REMOVAL OF DUPLICATES FROM AN ORDERED ARRAY

Problem

Remove all duplicates from an ordered array and contract the array accord-
ingly.

As a starting point for this design let us focus on a specific example so that we
have a clear idea of exactly what is required.

1 2 3 4 5 6 7 8 910111213
212]8115(23]123(23]23|26|29(30(32|32| Before duplicate removal

...................

After a brief examination of the array we will be able to produce the
contracted array below:

1 2 3 4 5 6 7 8
2 18115(23]126(29|30|32| After duplicate removal

Comparing the two arrays we see that all elements, apart
from the first, have shifted their positions in the array. In other words, each
unique element in the original array has been moved as far to the left as
possible.

Whatever mechanism we finally decide upon is going to need to be built
around the detection of duplicates in the original data. A duplicate pair is
identified when two adjacent elements are equal in value. With each com-
parison, only two situations are possible:

1. a pair of duplicates has been encountered;
2. the two elements are different.

Study of our example reveals that the position in the array where each
most recently encountered unique element must be located is determined at
each instance by the number of unique elements met so far. In the case of the
26, it is the fifth unique element and so it must accordingly be placed in
position 5. This suggests the use of a counter, the value of which at each
instance reflects the number of unique elements encountered to date. If i is
the position where the most recently encountered unique element is found
and j is the count of the number of unique elements to date, then an
assignment of the form:

alj] := ali]

Summarizing the basic steps so far in our mechanism we have:

while all adjacent pairs of elements have not been compared do
(a) if they are not equal, shift the rightmost element in the next pair to the
array position determined by the current unique element count.

When we consider how the algorithm must terminate,
=2
ali—1]=ali]? (comparison)

is better because it allows the algorithm to terminate

directly when i is equal to n, the number of elements in the original array.

We may have noticed in exploring the problem that if there are no
duplicates in the array, then the repeated assignment

alj] := a[i]

1s unnecessary because all elements are already in their correct place. Even if

duplicates are present in an array it is only necessary to start shlftmg
elements after the first dupllcate is encountered.

" One way is to compare pairs of elements until a
duplicate is encountered For this we can use a loop of the form

while gli—11<>dlildo i := i+1

When a duplicate is encountered, the unique element count will be i—1. The
variable j should be set to this value.

Algorithm description

1. Establish the array 4[1..n] of n elements.
2. Set loop index i to 2 to allow correct termination.
3. Compare successive pairs of elements until a duplicate is encountered
then set unique element count j.
4. While all pairs have not been examined do
(a) if next pair not duplicates then
(a.1) add one to unique element count j,
(a.2) move later element of pair to array position determined
by the unique element count j.

Pascal implementation

procedure duplicates (var a: nelements; var n: integer);

var / {at all times i — 1 is equal to the number of pairs examined},
/ {eurrent count of the number of unigue elements encounteredy}:
integer,

begin {deletes duplicates from an ordered array}
lassert: n >1/\elements a[1..n]in non-descending order}
i:=2;
while (a[i —1]<>a[/])and (i<n)do/ :=i+1;
if a[i —1]<>al[/] then/ := i+ 1;
{assert: i >=2Aa[1../ - 1]unique \in ascending order}
fi=i-1;
{invariant: after the ith iteration j<=i—1Ai=<n+1Athere are no
equal adjacent pairs in the set a[1./]}
while/i<n do
begin {examine next pair}
Fi=i+1;
if a[/ —1]<>al/] then
begin {shift latest unique element to unique count position}

Ji=7+0
al/] := al/]
end

ol -

Notes on design

1. To delete duplicates from an array of n elements (n—1) comparisons
are required. The number of data movements (i.e. a[j] : = a[i] instruc-
tions) required is at best 0 and at worst (n—2). In general it will be
somewhere between these two extremes.

2. At the end of each iteration, the variable j represents the number of
unique elements encountered in examining the first (i—1) pairs of
elements. The j unique elements encountered are located in the firstj
locations of the array. On termination when i=n or n+1 the value of j
will represent the number of unique elements in the original input data.
The algorithm will terminate because the variable i advances by one
towards n with each iteration. The algorithm will function correctly for
values of n>1. In the case when all elements are unique the second
while-loop is not entered.

Applications
Data compression and text processing problems.
Supplementary problems

4.4.1 Remove from an ordered array all numbers that occur more than

once.
4.4.2 Delete from an ordered array all elements that occur more than k
times.
Algorithm 4.5
PARTITIONING AN ARRAY
Problem

Given a randomly ordered array of n elements, partition the elements into
two subsets such that elements <x are in one subset and elements >x are in
the other subset.

Algorithm development

This problem is relevant to some sorting and median finding algorithms. To
try to focus on what must be done, we can consider a particular example.
Given the random data sct below, we arc asked to partition it into two

subsets, one containing elements <17 and the other containing elements
>17.

al1] a[10]
2812625 (1116|1224 (29 |6 |10 Top end of array

Clearly we need to be able to separate the two subsets. To do this, we

could put those elements >17 at the top end (the high suffix end) of the
arrav and those <17 at the bottom of the arrav.

With this solution to the problem, we have actually ordered the two
subsets in addition to separating them. In our original statement of the

problem it was noft required that the elements be ordered. For our example
the configuration below:

p
!

1216 1011|116 |28124 292625

— =17 >< >17 —

would equally well have satisfied the requirements of the problem. Notice in
this data set that while the data is still partitioned into two subsets the
elements are no longer ordered. Sorting of data is usually a costly operation.

28 2625|1116 [12|24|29| 6 |10 Random set
p
l - .
126 [10]11]16|28[24|29|26]25 A partitioned
solution

Comparing these two data sets, we see that elements at the left-hand
end >17 must be moved to the right-hand end of the partitioning point p.

Elements <17 that are to the left of p need not be moved because they
are already in their proper partition. This saving will result in fewer exchanges
being required than in the sort method. When we are initially presented with
the random set we do not know how many elements are <17. One way to
overcome this would be to make a pass through the array counting all values
=<17. Once we know the value of p we can then make another pass through
the array. This time when we encounter a value >17 on the left side of p we
must move it to the rightof p.

Left partition Right partition
(growing to the (growing to the
right) — «— left)

If we continue this ““pincer’ process, the two partitions will eventually
meet and when they do we will have the desired partition for our complete
data set. Working completely through our example above, we get:

| [——] |

28126(25(11(16(12)|24]|29 (6|10 Random set

r
—

With these exchanges we end up with the partitioned set below:

p
d

10|16 |12 |11 |16(25|24]29|26|28

It can be seen that this approach enables us to partition the data by making
just one pass rather than two passes through the array. We might therefore
propose the following basic partitioning mechanism:

while the two partitions have not met do
(a) extend the left and right partitions inwards exchanging any wrongly
placed pairs in the process.

The first consideration is to model the ‘“moving inwards’ process.
Movement inwards from the left can proceed until we encounter an element
larger than the partitioning value x (in the above example x = 17). This can
be accomplished by a loop of the form:

while q[i]<x do i := i+1

Movement inwards from the right can proceed until we encounter an
element smaller than or equal to x; for this we can use a decreasing loop:

while a[j]>x do j := j—1

The starting value for i must be 1 and the starting value for j must be n, the
number of elements in the array. As soon as both loops have terminated we

have detected an element at position i, that must be moved to the right
partition, and an element at j, that must be moved to the left partition.

i=1 ali]>x al jl=x j=n

Elements still to

a: Left partition be partitioned

Right partition

_ i j —

At this point the /' and j'" elements can be exchanged. For the exchange
we can use the standard technique:

t .= alil;
ali] := aljl;
aljl :=t

After the exchange we can start the ‘“moving inwards’ process again at
positions (i+1) and (j—1).

The only other implementation considerations we need to make involve
termination of the loops. Only when the two partitions meet do we need to
terminate the ‘“‘pincer” process. That is, the main loop should progress only
while the i index is less than the j index. That is,

while i<j do
(a) moveiandjtowardseachother exchanging any wrongly placed pairs in
the process.

Incorporating the ideas tor moving inwards and exchanging wrongly
placed pairs we get:

while i<j do

begin
while al[i]<sx do i := i+1;
while a[j]>x do j := j—1;
t .= ali];
ali] := aljl;
aljl := ¢
1 := i+1;
j:=j—1

end

With this loop structure we see that because of the way i and j are changed
after each exchange, they can cross over when the two partitions meet. It
follows that we can end up with the configuration shown below:

1) n
all..jlsx ali..n]>x

The index j will therefore indicate the upper limit for the left partition.

Algorithm description

1. Establish the array a[1..n] and the partitioning value x.

2. Move the two partitions towards each other until a wrongly placed pair
of elements is encountered. Allow for special cases of x being outside
the range of array values.

3. While the two partitions have not met or crossed over do

(a) exchange the wrongly partitioned pair and extend both partitions
inwards by one element;

(b) extend left partition while elements less than or equal to x;
(¢) extend the right partition while elements are greater than x.
4. Return the partitioning index p and the partitioned array.

Pascal implementation

procedure xpartition (var a: nelements; n: integer; var p: integer; x:
real);
var / {current upper boundary for values in partition =<x},

/ {current lower boundary for values in partition >x}: integer;

t [toamnnrans wvariahla far avehannals raal:

begin {partition array into two subsets (1) elements =<x
(2) elements>x}
{assert: n >0}
i :=1;7j:=n;.
while (i </) and (a[/]<=x)do/ := i+1;
while (i <<j) and (a[/]>x)do/ :=/;—1;
if al/]>x then;j :=;-1;
{invariant: after the ith iteration a[l1..i—1]=<xAalj+1.n]>x
N=<n+1N>=0A7=<j+1}
while / </ do
begin {eﬁ:hange current pair that are in wrong positions}
t := al/l;
ali] := alj];
alj] := ¢
{move inwards past the two exchanged values}
fi=i+1;
Jjr=i-1

{extend fower partition}
while a[/]<=xdo/ :=i+1;
{extend upper partition}
while a[j/]>x doj :=j—1
end;
{assert: a [1./ —1]=<xAalj+1.n]>xN\i>j}
P =/
end

Notes on design

1. To partition an array into two subsets at most (n +2) comparisons of the
form afil=x and a[j]>x must be made. The number of exchanges
required can vary between 0 and |n/2] depending on the distribution of
the array elements. If a sorting method had been used for partitioning,

of the order of nlog,n (written O(nlog,n)) comparisons would have
been required.

2. Aftereach iteration the first (i—1) elements in the array are <x and the
last (n—j) elements are >x. The variables i and j are increased and
decreased respectively in such a way that these two relations hold. The
outer while-loop will terminate because with each iteration the dis-
tance between i and j is decreased by at least 2 because the statements
i :=i+1andj:= 1 are executed at least once.

Applications

Sorting, statistical classification.

Algorithm 4.6
FINDING THE At SMALLEST ELEMENT

Problem

Given a randomly ordered array of n elements determine the k'™ smalle:
element in the set.

Problem

Given a randomly ordered array of n elements determine the k' smallest
element in the set.

Since we have noidea in advance what the k" smallest value is, we might
therefore be tempted to choose a value x at random from the array and

partition the array about x. The variables / and u are initially assigned to the
bounds of the array. For example,

« A —> B >

subset=x subset=x

A

However, the value x will cause the original data set to be
divided into two smaller subsets. The k" smallest value will have to be in one
or the other of these two subsets A and B.

However, the value x will cause the original data set to be
divided into two smaller subsets. The k™" smallest value will have to be in one
or the other of these two subsets A and B. If, for example, the k' smallest
value is in subset B (i.e. in the subsct with clements =x) then we can
completely disregard subset A and start trying to find the £'" smallest value in
subset B. The easiest way to do thisis to replace / by /' and start searching for
the k™" smallest value again in the smaller subset B. If we repeatedly apply
this partitioning process to smaller and smaller subsets that contain the k"
smallest value we will eventually obtain the desired result.

1. kt smallest in subset =x:

k

k't smallest in this subset

[J i L_ k™ position u

Here we set [:= i and repeat the partitioning process for the new limits
of / and w.

2. k'™ smallest in subset <x:

k
k smallest in this subset
! k™ position — 1 joi u

Here we set u := j and repeat the partitioning process for the new limits
of u and I. By examining the values of i and j on termination of the
partitioning loop we know which subset contains the k™ smallest value and
hence which limit must be updated. The two tests we can use are

if j<k then !/ := i;
if i>k then u := |

The partitioning process need only continue while /<<u. The variables i andj
will need to be reset to the adjusted limits / and u« before beginning each new
partitioning phase.

The basic mechanism may therefore take the form:

while /<u do
(a) choose some value x about which to partition the array,
(b) partition the array into two partitions marked by i and j,
(c) update limits using the tests

if j<k then [/ := |

if i>k then u := |

The difference we may anticipate at this stage is that x will be selected
using

x .= a[k]

Algorithm description

1. Establisha[l..n] and the requirement that the k' smallest element i
sought.
2. While the left and right partitions do not overlap do
(a) choose a[k] as the current partitioning value x;
(b) set i to the upper limit / of the left partition;
(c) setj to the lower limit u of the right partition;

(d) whileihasnotadvanced beyond k andjisgreater than orequal tc
k do

(d.1) extend the left partition while a[i]<x;
(d.2) extend the right partition while x<al[j];
(d.3) exchange a[i] with a[J];
(d.4) extend i by 1 and reduce j by 1;
(e) if k' smallest in left partition, update upper limit u of left parti-
tion;
(f) if k™ smallest in right partition, update lower limit / of right
partition.
Return the partitioned array with elements <a[k] in the first k posi-
tions in the array.

Pascal implementation

procedure kselect (var a: nelements; k, n: integer);
var / {temporary extension of left partition for current guess at kth
smallest element x},
J/ {temporary extension of right partition for current guess at kth
smallest element x},
! {upper limit for left partition},
u {lower limit for right partition} integer;
x {current guess at kth element in array},
t {temporary variable used to exchange ali/] with al/] }: real;

begin {finds kth smallest elernent in array a. on termination kth
smallest is in position k}

{assert: n>0AN1=<k=<n)}
/:=1;
u:=n,;
{invariant: all a[1../—1]=<all alu +1.n]N=<k+1Ak—1=<u}
while /<u do
begin {using new estimate of kth smallest x try to extend left

and right partitions}
i =1

J = u;

x = a[k];

{invariant: all a[l..i—1]=<all alj +1.ulANf=<k+1Nj>=k -1
Al=<k=<n}
while (f<=k) and (f>=k) do
begin {extend left and right partitions as far as possible, then
exchange}

end

F+1;

while a[/]<xdo/ :=
=/—1;

while x <a[j/] do :
t .= alrl];
al/] := alj];
alj] :=t;
i = I+1;
Ji=/7—1
end;
{update limits of left and right positions as required}
if /<k then/ := J;
if I >k thenu =
end
{assert: all a[1.k]=<all alk.n]}

