

An approach we could take is illustrated by the following diagram:

It involves taking a piece of graph paper or dividing plain paper up into slots each of

which can be identified with a particular mark value. The next step is to examine

each mark, and, depending on its value, we place a star in the corresponding mark's

slot. If we applied this step to all marks when the task was completed the number

of stars associated with each slot would represent the mark's count for that

particular mark. The method we have outlined is certainly a workable hand

solution. In the method we have proposed it is not necessary to compare each

mark with all possible marks' values. Instead, the value of a particular mark leads us

directly to the particular slot that must be updated. This one-step procedure for

each mark would certainly be very attractive if it could be carried across to the

computer algorithm. It is at this point that we need to recognize that an array can

be usefully employed in the solution to our problem. We can very easily set up an

array with 101 locations, each location corresponding to a particular mark value.

For example.

If we store in each array location the count of the number of students that

obtained that mark we will have the required solution to the problem (e.g. if 15

students obtained the mark 57, then we will have the number 15 in location 57

when all marks have been examined). Initially we can consider what happens when

a particular mark is encountered. Suppose the current mark to be counted is 57. In

using the array for counting we must at this stage add one to the count stored in

location 57. For this step we can use the actual mark's value (i.e. 57) to reference

the array location that we wish to update. That is, the mark's value can be

employed as an array suffix. Because it is necessary to add one to the previous

count in location 57, we will need a statement of the form:

Notes on design

1. Essentially n steps are required to generate the frequency histogram for a set of

n marks.

2. After i iterations the nth element in the a array will contain an integer

representing the number of marks j encountered in the first i marks. This relation

holds for all j in the range 0<j-c-100 and for all i in the range 1-s:i.s.n. On

termination, when i= n, all array elements will reflect the appropriate marks' counts

for the complete set. It follows from the definition of the for-loop that both loops

terminate.

3. The idea of indexing by value is important in many algorithms because of its

efficiency.

Applications

 Statistical analyses.

The maximum is that number which is greater than or equal to all other numbers in
the set. This definition accommodates the fact that the maximum may not be
unique. It also implies that the maximum is only defined for sets of one or more
elements. For example,

When the first number appears on the screen we have no way of knowing whether

 or not it is the maximum. In this situation the best that we can do is write it down

as our temporary candidate for the maximum. Having made the decision to write down

the first number we must now decide what to do when the second number appears

 on the screen. Three situations are possible:

1. the second number can be less than our temporary candidate for the maximum;

2. the second number can be equal to our temporary candidate for the maximum;

3. the second number can be greater than our temporary candidate for the

maximum.

If situations (1) or (2) apply our temporary candidate for the maximum is still valid

and so there is no need to change it. In these circumstances we can simply go

ahead and compare the third number with our temporary maximum which we will

call max. However, if the second number is greater than our temporary max-imum,

we must cross out our original temporary maximum and write down the second

number as the new temporary maximum. We then move on and compare the third

number with the new temporary maximum. The whole process will need to

continue until all elements in the set have been examined. As larger values are

encountered they assume the role of the temporary maximum. At the time when

all numbers have been examined the temporary maximum that is written down is

the maximum for the complete set. This strategy can form the basis of our

computer algorithm.

 Our initial proposal might therefore be:

Algorithm description

1. Establish an array a[1.. n] of n elements where n>= 1

2. Set temporary maximum max to first array element.

3. While less than n array elements have been considered do

 (a) if next element greater than current maximum max then assign it to max.

4. Return maximum max for the array of n elements.

Notes on design

1. The number of comparisons needed to find the maximum in an array of n

elements is n-1.

2. For all i in the range 1 ≤ i≤ n when i elements have been examined the variable

max is greater than or equal to all elements in the range 1 to i.

