
Chapter 2: Boolean Algebra and Logic Gates

2.1 Introduction

2.2 Basic Definitions2.2 Basic Definitions

2.3 Axiomatic Definition of Boolean Algebra

2 4 Basic Theorems and Properties of Boolean Algebra2.4 Basic Theorems and Properties of Boolean Algebra

2.5 Boolean Functions

2 6 Canonical and Standard Forms2.6 Canonical and Standard Forms

2.7 Other Logic Operations

2 8 Di it l L i G t2.8 Digital Logic Gates

2.9 Integrated Circuits

NCNU_2013_DD_2_1

Basic Definitions
• Mathematical methods that simplify binary logics or circuits rely primarily on

Boolean algebra.
B l l b t f l t t f t d b f d• Boolean algebra: a set of elements, a set of operators, and a number of unproved
axioms or postulates.

• A set of elements is any collection of objects, usually having a common property. y j , y g p p y
A = {1, 2, 3, 4} indicates that set A has the elements of 1, 2, 3, and 4.

• A binary operator defined on a set S of elements is a rule that assigns, to each
pair of elements from S a unique element from Spair of elements from S, a unique element from S.

• The most common postulates used to formulate various algebraic structures are
as follows:
1.Closure. A set S is closed with respect to a binary operator if, for every pair of

elements of S, the binary operator specifies a rule for obtaining a unique
element of Selement of S.

2.Associative law. A binary operator * on a set S is said to be associative
whenever (x * y) * z = x * (y * z) for all x, y, z,  S

NCNU_2013_DD_2_2

3.Commutative law. A binary operator * on a set S is said to be commutative
whenever x * y = y * x for all x, y  S

4.Identity element. A set S is said to have an identity element with respect to a
binary operation * on S if there exists an element e  S with the property that

e * x = x * e = x for every x  Se x = x e = x for every x  S
Example: The element 0 is an identity element with respect to the binary
operator + on the set of integers I = {c, -3, -2, -1, 0, 1, 2, 3,c}, since x + 0 = 0
+ f I+ x = x for any x  I
The set of natural numbers, N, has no identity element, since 0 is excluded
from the set.

5.Inverse. A set S having the identity element e with respect to a binary operator
* is said to have an inverse whenever, for every x  S, there exists an element
y  S such that x * y = ey  S such that x y e
Example: In the set of integers, I, and the operator +, with e = 0, the inverse of
an element a is (-a), since a + (-a) = 0.

6 Di t ib ti l If * d t bi t t S * i id t b6.Distributive law. If * and • are two binary operators on a set S, * is said to be
distributive over • whenever x * (y • z) = (x * y) • (x * z)

NCNU_2013_DD_2_3

Field
• A field is an example of an algebraic structure.
• The field of real numbers is the basis for arithmetic and ordinary algebra.

– The binary operator + defines addition.
– The additive identity is 0.

The additi e in erse defines s btraction– The additive inverse defines subtraction.
– The binary operator • defines multiplication.
– The multiplicative identity is 1.The multiplicative identity is 1.
– For a ≠ 0, the multiplicative inverse of a = 1/a defines division (i.e., a •1/a = 1).
– The only distributive law applicable is that of • over +:

a • (b + c) = (a • b) + (a • c)

NCNU_2013_DD_2_4

Axiomatic Definition of Boolean Algebra
• 1854: George Boole developed an algebraic system now called Boolean algebra.
• 1904: E. V. Huntington formulated a set of postulates that formally define the

Boolean algebraBoolean algebra
• 1938: C. E. Shannon introduced a two-valued Boolean algebra called switching

algebra that represented the properties of bistable electrical switching circuits

• Two binary operators, + and •, (Huntington) postulates:
1 (a) The structure is closed with respect to the operator +1. (a) The structure is closed with respect to the operator +.

(b) The structure is closed with respect to the operator •.
2. (a) The element 0 is an identity element with respect to +; that is, x + 0 = 0 + x = x.

(b) The element 1 is an identity element with respect to •; that is x • 1 = 1 • x = x(b) The element 1 is an identity element with respect to •; that is, x • 1 = 1 • x = x.
3. (a) The structure is commutative with respect to +; that is, x + y = y + x.

(b) The structure is commutative with respect to • ; that is, x • y = y • x.

NCNU_2013_DD_2_5

4. (a) The operator • is distributive over +; that is, x • (y + z) = (x • y) + (x • z).
(b) The operator + is distributive over •; that is, x + (y • z) = (x + y) • (x + z).

5. For every element x  B, there exists an element x  B (called the complement of x)
such that (a) x + x = 1 and (b) x • x = 0.

6 There exist at least two elements x y  B such that x ≠ y6. There exist at least two elements x, y  B such that x ≠ y.

• Comparing Boolean algebra with arithmetic and ordinary algebra
1. Huntington postulates do not include the associative law. However, this law holds for

Boolean algebra and can be derived (for both operators) from the other postulates.
2 The distributive law of + over • (i e x + (y • z) = (x + y) • (x + z)) is valid for Boolean2. The distributive law of + over (i.e., x + (y z) (x + y) (x + z)) is valid for Boolean

algebra, but not for ordinary algebra.
3. Boolean algebra does not have additive or multiplicative inverses; therefore, there are

no subtraction or division operationsno subtraction or division operations.
4. Postulate 5 defines an operator called the complement that is not available in ordinary

algebra.
5. Ordinary algebra deals with the real numbers, which constitute an infinite set of

elements. Boolean algebra deals with the as yet undefined set of elements, B, but in the
two­valued Boolean algebra defined next (and of interest in our subsequent use of that

NCNU_2013_DD_2_6

algebra), B is defined as a set with only two elements, 0 and 1.

Two-valued Boolean Algebra
• B = {0,1}
• The rules of operations

x y xy x y x+y x x
0 0 0 0 0 0 0 1

AND OR NOT

0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1

• Closure: the result of each operation is either 1 or 0 and 1, 0  B.

1 1 1 1 1 1

• Identity elements: 0 for + and 1 for ‧
• The commutative laws are obvious from the symmetry of the binary operator

tablestables.

NCNU_2013_DD_2_7

• Distributive laws:
– x‧(y + z) = (x‧y) + (x‧z)
– x+ (y‧z) = (x+y)‧(x+z)

y z x+(y z) x+y x+z (x+y) (x+z)y‧z x+(y‧z)
0 0
0 0
0 0
1 1

x+y x+z (x+y)‧(x+z)
0 0 0
0 1 0
1 0 0
1 1 11 1

0 1
0 1
0 1
1 1

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

NCNU_2013_DD_2_8

1 1 1 1 1

• Complement
– x+x'=1: 0+0'=0+1=1; 1+1'=1+0=1
– x‧x'=0: 0‧0'=0‧1=0; 1‧1'=1‧0=0

• Has two distinct elements 1 and 0, with 0 ≠ 1
We ha e j st established a t o al ed Boolean algebra:• We have just established a two­valued Boolean algebra:
– a set of two elements
– + : OR operation; ‧ : AND operation+ : OR operation; : AND operation
– a complement operator: NOT operation
– Binary logic is a two-valued Boolean algebra
– also called “switching algebra” by engineers

NCNU_2013_DD_2_9

Basic Theorems and Properties of Boolean Algebra

• Duality
– the binary operators are interchanged; AND  OR
– the identity elements are interchanged; 1  0

NCNU_2013_DD_2_10

• Theorem 1(a): x+x = x
x+x = (x+x) •1 by postulate: 2(b)

() () ()= (x+x) (x+x') 5(a)
= x+xx' 4(b)
= x+0 5(b) x 0 5(b)
= x 2(a)

• Theorem 1(b): x • x = x
x • x = x x + 0 by postulate: 2(a)

= xx + xx' 5(b)
= x (x + x') 4(a)= x (x + x) 4(a)
= x • 1 5(a)
= x 2(b)

• Theorem 1(b) is the dual of theorem 1(a)

NCNU_2013_DD_2_11

• Theorem 2(a): x + 1 = 1
x + 1 = 1 • (x + 1) by postulate: 2(b)

= (x + x')(x + 1) 5(a)
= x + x' • 1 4(b)

+ ' 2(b)= x + x' 2(b)
= 1 5(a)

• Theorem 2(b): x • 0 = 0 by dualityTheorem 2(b): x 0 0 by duality
• Theorem 3: (x')' = x

– Postulate 5 defines the complement of x, x + x' = 1 and x • x' = 0
– The complement of x' is x is also (x')'

NCNU_2013_DD_2_12

• Theorem 6(a): x + xy = x
x + xy = x • 1 + xy by postulate: 2(b)

= x (1 +y) 4(a)
= x • 1 2(a)

2(b)= x 2(b)
• Theorem 6(b): x (x + y) = x by duality
• By means of truth tableBy means of truth table

x y xy x + xy
0 0 0 00 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

NCNU_2013_DD_2_13

DeMorgan's Theorems
– (x+y)' = x' y‘

x y x+y (x+y) x y xyy y (y) y y
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

– (x y)' = x' + y'

x y xy ()   + x y xy (xy) x y x+y
0 0 0 1 1 1 1
0 1 0 1 1 0 10 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

NCNU_2013_DD_2_14

1 1 1 0 0 0 0

Operator Precedence
• The operator precedence for evaluating Boolean expressions is

1. parentheses
2. NOT
3. AND
4 OR4. OR

• Examples
– x y' + zx y + z
– (x y + z)'

NCNU_2013_DD_2_15

Boolean Functions
• A Boolean function is an algebraic expression consists of

– binary variables
– binary operators OR and AND
– unary operator NOT

parentheses– parentheses
• A Boolean function expresses the logical relationship between binary variables

and is evaluated by determining the binary value of the expression for all possible
values of the variables.

• Examples
F ’ F 1 if 1 if 0 d 1 h F 0– F1= x + y z’  F1 = 1 if x = 1 or if y = 0 and z = 1, others F1 = 0.

– F2 = x' y' z + x' y z + x y’
F = 1 if (x = 0 y = 0 z = 1) or (x = 0 y = 1 z = 1) or (x = 1 y = 0)F2 1 if (x 0, y 0, z 1) or (x 0, y 1, z 1) or (x 1, y 0),
others F2 = 0.

What are the others?

NCNU_2013_DD_2_16

What are the others?

Truth Table
• Boolean function can be represented in a truth table.
• Truth table has 2n rows where n is the number of variables in the function.
• The binary combinations for the truth table are obtained from the binary numbers

by counting from 0 through 2n - 1.

Implementation of F1 with logic gates

F1= x + y z’

NCNU_2013_DD_2_17

1 y

Equivalent Logics
F2 = x’y’z + x’yz + xy’

• Boolean function can be
represented in truth table
only in one way

2 y y y
= x’z(y’ + y) + xy’
= x’z + xy’

only in one way.
• In algebraic form, it can be

expressed in a variety of
ways, all of which have
equivalent logic.

• Using Boolean algebra, it isUsing Boolean algebra, it is
possible to obtain a simpler
expression for the same
function with less numberfunction with less number
of gates and inputs to the
gate.

• Designers work on reducing
the complexity and number
of gates to significantly

NCNU_2013_DD_2_18

g g y
reduce the circuit cost.

Algebraic Manipulation
• To minimize Boolean expressions

– literal: a complemented or un-complemented variable (an input to a gate)
– term: an implementation with a gate
– The minimization of the number of literals and the number of terms => a

circuit with less equipmentcircuit with less equipment

F2 = x’y’z + x’yz + xy’  3 terms, 8 literals
= x’z(y’ + y) + xy’ x z(y + y) + xy
= x’z + xy’  2 terms, 4 literals

• Functions of up to five variables can be simplified by the map method described
in the next chapter.

• For complex Boolean functions and many different outputs designers of digital• For complex Boolean functions and many different outputs, designers of digital
circuits use computer minimization programs that are capable of producing
optimal circuits with millions of logic gates.

NCNU_2013_DD_2_19

Minimization of Boolean Function

NCNU_2013_DD_2_20

Complement of a Function
• F’ is obtained from an interchange of 0's for 1's and 1's for 0's in the value of F
• The complement of a function may be derived using DeMorgan's theorem.
• Three-variable DeMorgan's theorem:

(A + B + C)’ = (A + X)’ let B + C = X
A’X’ b DeMorgan's= A’X’ by DeMorgan's

= A’(B + C)’ X = B + C
= A’(B’C’) by DeMorgan's A (B C) by DeMorgan s
= A’B’C’ associative

• Generalized form
– (A + B + C + ... + F)’ = A’B’C’ ... F’
– (ABC ... F)’ = A’ + B’ + C’+ ... + F’

NCNU_2013_DD_2_21

EXAMPLE 2.2

EXAMPLE 2 3EXAMPLE 2.3

NCNU_2013_DD_2_22

Minterms and Maxterms
• A minterm (standard product): an AND term consists of all literals in their

normal form or in their complement form
• For example two binary variables x and y has 4 minterms• For example, two binary variables x and y, has 4 minterms

– xy, xy', x'y, x'y‘
• n variables can be combined to form 2n minterms (mj, j = 0 ~ 2n-1)n variables can be combined to form 2 minterms (mj, j 0 2 1)
• A maxterm (standard sum): an OR term; 2n maxterms (Mj, j = 0 ~ 2n-1)
• Each maxterm is the complement of its corresponding minterm, and vice versa.

NCNU_2013_DD_2_23

Canonical Form: Sum of Minterms
• An Boolean function can be expressed by

– a truth table
– sum of minterms f = Σ mj

– product of maxterms f = Π Mj

f ' ' + ' ‘ + + +– f1 = x'y'z + xy'z + xyz = m1 + m4 +m7

– f2 = x'yz + xy'z + xyz‘ + xyz = m3 + m5 +m6 + m7

NCNU_2013_DD_2_24

Canonical Form: Product of Maxterms
• The complement of a Boolean function

– the minterms that produce a 0
– f1' = m0 + m2 +m3 + m5 + m6 = x'y'z‘ + x'yz‘ + x'yz + xy'z + xyz'
– f1 = (f1’)’ = (x + y + z)(x + y‘ + z) (x + y‘ + z') (x‘ + y + z')(x‘ + y‘ + z)

M M M M M– = M0 M2 M3 M5 M6

– f2 = (x + y + z)(x + y + z’)(x + y’ + z)(x’ + y + z)
= M0 M1 M2 M40 1 2 4

• Canonical form: any Boolean function expressed as a sum of minterms or a
product of maxterms

NCNU_2013_DD_2_25

Minterm Expansion
• EXAMPLE 2.4: Express the Boolean function F=A+B’C as a sum of minterms.

– F = A + B'C = A (B + B') + B'C = AB + AB' + B'C
– = AB(C + C') + AB'(C + C') + (A + A')B'C
– = ABC + ABC‘ + AB'C + AB'C‘ + A'B'C

A'B'C + AB'C' + AB'C + ABC‘ + ABC– = A'B'C + AB'C' + AB'C + ABC‘ + ABC
– = m1 + m4 +m5 + m6 + m7

– F(A,B,C) = Σ (1, 4, 5, 6, 7)F(A,B,C) Σ (1, 4, 5, 6, 7)
– or, built the truth table first

NCNU_2013_DD_2_26

Maxterm Expansion
EXAMPLE 2.5: Express the Boolean function F = xy + x’z as a product of
maxterms.

– F = xy + x'z = (xy + x') (xy + z) = (x + x')(y + x')(x + z)(y + z)F xy + x z (xy + x) (xy + z) (x + x)(y + x)(x + z)(y + z)
– = (x’ + y)(x + z)(y + z)

– x‘ + y = x' + y + zz‘ = (x‘ + y + z)(x‘ + y + z')
– x + z = x + z + yy’ = (x + y + z)(x + y’ +z)

y + z = y + z + xx’ = (x + y + z)(x’ + y +z)– y + z = y + z + xx = (x + y + z)(x + y +z)

– F = (x + y + z)(x + y‘ + z)(x‘ + y + z)(x‘ + y + z') = M0 M2 M4 M5

– F(x,y,z) = Π (0,2,4,5)

h k thi lt ith t th t bl– check this result with truth table

NCNU_2013_DD_2_27

Canonical Form Conversion
• Conversion between Canonical Forms

– F(A,B,C) = (1,4,5,6,7)  F’(A,B,C) = (0,2,3) = m0 + m1 + m2

– By DeMorgan's theorem

F = (m0 + m1 + m2)’ = m’0 • m’2 • m’3

= M0 M2 M3 = Π(0, 2, 3)

– mj' = Mjj j

• sum of minterms product of maxterms
– interchange the symbols  and  and list those numbers missing from the

i i l foriginal form
•  of 1's   of 0's

NCNU_2013_DD_2_28

Conversion Example
• F = xy + xz
• F(x, y, z) = (1, 3, 6, 7)
• F(x, y, z) =  (0, 2, 4, 5)

NCNU_2013_DD_2_29

Standard Forms
• Canonical forms are baseline expression and seldom used, they are not minimum
• Two standard forms are used usually

– sum of products F1 = y' + xy + x'yz'
– product of sums F2 = x(y‘ + z)(x‘ + y + z’)

• This circuit configuration is referred to as a two­level implementation.
• In general, a two­level implementation is preferred because it produces the least

amount of delay through the gates when the signal propagates from the inputs to

NCNU_2013_DD_2_30

amount of delay through the gates when the signal propagates from the inputs to
the output. However, the number of inputs to a given gate might not be practical.

Nonstandard Forms

• F3 = AB + C(D + E)
= AB + C(D + E) = AB + CD + CE AB C(D E) AB CD CE

• Which kind of gate will have the least delay (high switching speed)?
• The delay through a gate is largely dependent on the circuit design and

NCNU_2013_DD_2_31

technology, as well as manufacturing process used. (taught in VLSI design)

Other Logic Operations
• 2n rows in the truth table of n binary variables
• 22n functions for n binary variables (each row may either be 0 or 1)

2• 16 (222)functions of two binary variables

NCNU_2013_DD_2_32

NCNU_2013_DD_2_33

Digital Logic Gates of Two Inputs

NCNU_2013_DD_2_34

Digital Logic Gates of Two Inputs

NCNU_2013_DD_2_35

Extension to Multiple Inputs
• A gate can be extended to multiple inputs

– if its binary operation is commutative and associative
• AND and OR are commutative and associative

– commutative: x + y = y + x , xy = yx
associati e: (+) + + (+) + + () ()– associative: (x + y) + z = x + (y + z) = x + y + z , (x y)z = x(y z) = x y z

Fx
y
z

F
x
y
z

x x
F

x
y
z

Fx
y
z

NCNU_2013_DD_2_36

Multiple-input NOR/NAND
• NAND and NOR are commutative but not associative => they are not extendable

(x ↓ y) ↓ z = [(x + y)’ + z]’ = (x + y) z’ = xz’ + yz’
x ↓ (y ↓ z) = [x + (y + z)’]’ = x’(y + z) = x’y + x’z

NCNU_2013_DD_2_37

Multiple-input NOR/NAND
• Multiple-input NOR = a complement of OR gate (x ↓ y ↓ z) = (x + y + z)’
• Multiple-input NAND = a complement of AND (x ↑ y ↑ z) = (x y z)’
• The cascaded NAND operations = sum of products
• The cascaded NOR operations = product of sums

NCNU_2013_DD_2_38DeMorgan’s theorems are useful here.

Multiple-input XOR/XNOR
• The XOR and XNOR gates are commutative and associative
• Multiple-input XOR gates are uncommon (this is not true anymore!)
• XOR(XNOR) is an odd(even) function: it is equal to 1 if the inputs variables

have an odd(even) number of 1's

NCNU_2013_DD_2_39

Positive and Negative Logic
• Two signal values (High/Low) <=> two logic values (1/0)

– positive logic: H = 1; L = 0
– negative logic: H = 0; L = 1

• Positive logic is commonly used.

NCNU_2013_DD_2_40

Digital Logic Families
• Digital circuit technology:

– TTL: transistor-transistor logic (dying?)
– ECL: emitter-coupled logic (high speed, high power consumption)
– MOS: metal-oxide semiconductor (NMOS, high density)

CMOS: complementar MOS (lo po er)– CMOS: complementary MOS (low power)
• CMOS technology now dominates the main stream of IC design, it will be taught

in Introduction to VLSI Design course.

NCNU_2013_DD_2_41

Some Important Parameters of Logic Families
• Fan­out specifies the number of standard loads that the output of a typical gate

can drive without impairing its normal operation. A standard load is usually
defined as the amount of current needed by an input of another similar gate in thedefined as the amount of current needed by an input of another similar gate in the
same family.

• Fan­in is the number of inputs available in a gate.
• Power dissipation is the power consumed by the gate that must be available

from the power supply.
• Propagation delay is the average transition delay time for a signal to propagate• Propagation delay is the average transition delay time for a signal to propagate

from input to output. For example, if the input of an inverter switches from 0 to 1,
the output will switch from 1 to 0, but after a time determined by the propagation
d l f h d i Th i d i i l i l hdelay of the device. The operating speed is inversely proportional to the
propagation delay.

• Noise margin is the maximum external noise voltage added to an input signal g g p g
that does not cause an undesirable change in the circuit output.

NCNU_2013_DD_2_42

Homework #2

• 2.2 (e) (f)

• 2.4 (d) (e)

• 2.9 (c)2.9 (c)

• 2.11 (b)

• 2.14 (b) (c)

2 22 (b)• 2.22 (b)

• 2.28

NCNU_2013_DD_2_43

