Chapter 2: Boolean Algebra and Logic Gates

2.1 Introduction

2.2 Basic Definitions

2.3 Axiomatic Definition of Boolean Algebra

2.4 Basic Theorems and Properties of Boolean Algebra
2.5 Boolean Functions

2.6 Canonical and Standard Forms

2.7 Other Logic Operations

2.8 Digital Logic Gates

2.9 Integrated Circuits

NCNU_2013 DD 2 1

Basic Definitions

« Mathematical methods that simplify binary logics or circuits rely primarily on
Boolean algebra.

* Boolean algebra: a set of elements, a set of operators, and a number of unproved
axioms or postulates.

» A set of elements 1s any collection of objects, usually having a common property.
A = {1, 2, 3, 4} indicates that set A has the elements of 1, 2, 3, and 4.

* A binary operator defined on a set S of elements 1s a rule that assigns, to each
pair of elements from §, a unique element from S§.

* The most common postulates used to formulate various algebraic structures are
as follows:

1.Closure. A set S is closed with respect to a binary operator if, for every pair of
elements of S, the binary operator specifies a rule for obtaining a unique
element of S.

2.Associative law. A binary operator * on a set S is said to be associative
whenever (x *y)*z=x*(y *z)forallx, y,z, € S

3.Commutative law. A binary operator * on a set S is said to be commutative

%y, — 4, %
whenever x *y =y *xforallx,y e § NCNU_2013 DD 2 2

4.1dentity element. A set S is said to have an identity element with respect to a

binary operation * on § if there exists an element e € S with the property that
e *x=x*e=xforeveryx € §

Example: The element 0 1s an 1dentity element with respect to the binary
operator + on the set of integers /= {c, -3, -2,-1,0, 1, 2, 3,c}, since x+0=0
+x =xforanyx € [/
The set of natural numbers, &, has no 1dentity element, since 0 is excluded
from the set.

5.Inverse. A set S having the identity element e with respect to a binary operator
* 1s said to have an inverse whenever, for every x € S, there exists an element
y € Ssuchthat x *y=e
Example: In the set of integers, /, and the operator +, with e = 0, the inverse of
an element a 1s (-a), since a + (-a) = 0.

6.Distributive law. If * and * are two binary operators on a set S, * is said to be
distributive over * whenever x *(yez)=(x *y)* (x *z2)

NCNU_2013 DD 2 3

Field

* A field is an example of an algebraic structure.
 The field of real numbers is the basis for arithmetic and ordinary algebra.
— The binary operator + defines addition.
— The additive identity 1s 0.
— The additive inverse defines subtraction.
— The binary operator * defines multiplication.
— The multiplicative identity is 1.
— For a # 0, the multiplicative inverse of a = 1/a defines division (i.e., a *1/a = 1).

— The only distributive law applicable is that of * over +:
a*(b+c)=(a*b)+(a-c)

NCNU_2013 DD 2 4

Axiomatic Definition of Boolean Algebra

» 1854: George Boole developed an algebraic system now called Boolean algebra.

* 1904: E. V. Huntington formulated a set of postulates that formally define the
Boolean algebra

« 1938: C. E. Shannon introduced a two-valued Boolean algebra called switching
algebra that represented the properties of bistable electrical switching circuits

* Two binary operators, + and *, (Huntington) postulates:

1. (a) The structure is closed with respect to the operator +.
(b) The structure is closed with respect to the operator .

2. (a) The element 0 is an identity element with respect to +; thatis,x + 0 =0 +x = x.
(b) The element 1 is an identity element with respect to ; thatis,x*1=1°x =x.

3. (a) The structure is commutative with respect to +; thatis,x +y =y + x.
(b) The structure is commutative with respect to ¢ ; thatis,x sy =y *x.

4. (a) The operator ° 1s distributive over +; thatis,x e (y +z) =(x * y) + (x * 2).

(b) The operator + is distributive over ¢; thatis,x + (y*z)=(x +y) * (x + 2).
NCNU_2013_DD_2_5

5. For every element x € B, there exists an element x € B (called the complement of x)
such that (a) x + x=1and (b) x * x = 0.

6. There exist at least two elements x, y € B such that x # y.

» Comparing Boolean algebra with arithmetic and ordinary algebra

1. Huntington postulates do not include the associative law. However, this law holds for
Boolean algebra and can be derived (for both operators) from the other postulates.

2. The distributive law of + over ¢ (i.e., x + (y *z) = (x +) * (x + z)) is valid for Boolean
algebra, but not for ordinary algebra.

3. Boolean algebra does not have additive or multiplicative inverses; therefore, there are
no subtraction or division operations.

4. Postulate 5 defines an operator called the complement that is not available in ordinary
algebra.

5. Ordinary algebra deals with the real numbers, which constitute an infinite set of
elements. Boolean algebra deals with the as yet undefined set of elements, B, but in the
two-valued Boolean algebra defined next (and of interest in our subsequent use of that
algebra), B is defined as a set with only two elements, 0 and 1.

NCNU_2013 DD 2 6

Two-valued Boolean Algebra
« B={0,1}

 The rules of operations

AND OR NOT
X y Xy X y | Xty x| X
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1

1 1 1 1 1 1 |

 Closure: the result of each operation is either 1 orOand 1, 0 € B.
* Identity elements: O for +and 1 for -

» The commutative laws are obvious from the symmetry of the binary operator
tables.

NCNU_2013 DD 2 7

e Distributive laws:

(x*y)+(x-2)

(xty) * (x+2)

—X°()/+Z)
—x+(y°z)

xy|x-z|(xy)+(x-2)

x-(y+2)

y+z

0

0

NCNU_2013_DD_2 8

e Complement
— x+x'=1: 0+0'=0+1=1; 1+1'=1+0=1
—x+x=0: 0+0=0-+1=0;1-1=1 + 0=0
» Has two distinct elements 1 and 0, with 0 # 1
* We have just established a two-valued Boolean algebra:
— a set of two elements
— +: OR operation; * : AND operation
— a complement operator: NOT operation
— Binary logic 1s a two-valued Boolean algebra

— also called “switching algebra” by engineers

NCNU_2013 DD 2 9

Basic Theorems and Properties of Boolean Algebra

 Duality

— the binary operators are interchanged; AND < OR

— the 1dentity elements are interchanged; 1 < 0

Table 2.1

Postulates and Theorems of Boolean Algebra

Postulate 2

Postulate 5

Theorem 1

Theorem 2

Theorem 3, involution
Postulate 3, commutative
Theorem 4, associative
Postulate 4, distributive
Theorem 5, DeMorgan

Theorem 6, absorption

(a)
(a)
(a)
(a)

x+0=x
x+x"'=1
X +x =x
x+1=1
(x")' =x

X+y=y+x
xX+@W+z)=k +y)+z
x(y+z)=xy+xz

(c+y) =xy
X +xy=x

(b)
(b)
(b)
(b)

(b)
(b)
(b)
(b)
(b)

x-1=
x-x' =
‘X =X
x-0=0
Xy = yx
x(yz) = (xy)z
X +yz=x+ykx +2)
() ="+’
x(x +y)=x

NCNU_2013 DD 2 10

e Theorem I(a): x+x =x

x+x = (x+x) 1 by postulate: 2(b)
= (x+x) (x+x") 5(a)

= x+xx' 4(b)
=x+0 5(b)

=X 2(a)

e Theorem I(b): x e x=x

xex=xx+0 by postulate: 2(a)
=xx + xx' 5(b)
=x(x +x) 4(a)
=x°1 5(a)

=X 2(b)

e Theorem 1(b) is the dual of theorem 1(a)

NCNU_2013 DD 2 11

 Theorem 2(a): x + 1 =1

x+tl=1(x+1) by postulate: 2(b)
=@ +x)x+ 1) 5(a)
=x+x'e1 4(b)
=x +x' 2(b)
=1 5(a)

e Theorem 2(b): x « 0 = 0 by duality

e Theorem 3: (x')'=x

— Postulate 5 defines the complement of x, x + x'= 1 andx ¢ x'=0

— The complement of x'is x 1s also (x")’

NCNU_2013 DD 2 12

e Theorem 6(a): x +xy =x

x+txy=x1+xp
=x (1 +y)
=x-°1

=X

by postulate: 2(b)

e Theorem 6(b): x (x + y) =x by duality

* By means of truth table

X y Xy X tXxy
OO0 0) 0)
0) 1 0) 0)
1 0)) 1
1 1 1 1

4(a)
2(a)
2(b)

NCNU_2013 DD 2 13

DeMorgan's Theorems

— (xty)'=x"y’

xlyl

yl

xl

(xt+y)’

xX+y

X 1Y

x!_l_yyl

V’
1
0
1

= |
EN
Nad
o oo
> Ao —o
=
|l =IO O —
=
=
_

NCNU_2013_DD_2_14

Operator Precedence

» The operator precedence for evaluating Boolean expressions is
1. parentheses
2. NOT
3. AND
4. OR
e Examples
— xy'+z
- (xy+2)

NCNU_2013 DD 2 15

Boolean Functions

» A Boolean function is an algebraic expression consists of
— binary variables
— binary operators OR and AND
— unary operator NOT

— parentheses

» A Boolean function expresses the logical relationship between binary variables
and is evaluated by determining the binary value of the expression for all possible

values of the variables.
» Examples
— Fi=x+yz'=» F,=1ifx=1orify=0and z =1, others F, = 0.
—Fy=x'y'z+x'yz+xy =
F,=11f(x=0,y=0,z=1)or(x=0,y=1,z=1)or (x=1,y=0),
others F, = 0.
What are the others?

NCNU_2013 DD 2 16

Truth Table

» Boolean function can be represented in a truth table.
» Truth table has 2” rows where # 1s the number of variables in the function.

 The binary combinations for the truth table are obtained from the binary numbers
by counting from 0 through 2" - 1.

Table 2.2
Truth Tables for F; and F,
X y z Fq F,
0 0 0 0 0 | . |
0 0 1 1) Implementation of F; with logic gates
0 1 0 0 0 y .
0 1 1 0 1 —] :}
1 0 0 1 1
1 0 1 1 1 ¥ D}c jﬁ
1 1 0 1 0o
: : ! ! g Fi=x+yz’

NCNU_2013 DD 2 17

Equivalent Logics

Fy=xyz+xyz+xy’

» Boolean function can be =xz(y'+y) +xy’
represented in truth table =xz+xy’
only in one way. B, o

e In algebraic form, it can be
expressed in a variety of g >
ways, all of which have
equivalent logic.

« Using Boolean algebra, it is
possible to obtain a simpler
expression for the same
function with less number
of gates and inputs to the

L]

() F=xyz+x'yz+xv

gate. : P)
* Designers work on reducing S i
the complexity and number /
of gates to significantly (b) o=y’ +x'
reduce the circuit cost. FIGURE 2.2

Implementation of Boolean function F, with gates

NCNU_2013 DD 2 18

Algebraic Manipulation

* To minimize Boolean expressions
— literal: a complemented or un-complemented variable (an input to a gate)
— term: an implementation with a gate

— The minimization of the number of literals and the number of terms => a
circuit with less equipment

Fy=xyz+xyz+xy’ =23 terms, § literals

=xz(y +y) txy’
=xz+xy’ => 2 terms, 4 literals

» Functions of up to five variables can be simplified by the map method described
in the next chapter.

» For complex Boolean functions and many different outputs, designers of digital
circuits use computer minimization programs that are capable of producing
optimal circuits with millions of logic gates.

NCNU_2013 DD 2 19

Minimization of Boolean Function

EXAMPLE 2.1

Simplify the following Boolean functions to a minimum number of literals.
L x(x"+y)=xx"+xy =0+ xy = xy.
2. x +xy=x+xH)x+y =1x +y)=x+y.
. (x+y)x+y)y=x+xy+txy +yy =x(1+y+y)=nx
4, xy +x'z+yz=xy + x'z + yz(x + x")
=Xy +x'z +xyz +x'yz
=xy(1 +2) +x'z(1 +y)
=Xxy +x'z.
5. @+ &' +2)(y +2z2)=(x +y)x’" + z), by duality from function 4.

NCNU_2013_DD_2_ 20

Complement of a Function

 F” 1s obtained from an interchange of 0's for 1's and 1's for 0's in the value of F
» The complement of a function may be derived using DeMorgan's theorem.

» Three-variable DeMorgan's theorem:

A+B+Cy=(4+Xy letB+C=X
=A’X by DeMorgan's
=A’(B+CYy X=B+C
=A(B’C’) by DeMorgan's
=ABC associative

* Generalized form
—(A+B+C+...+F)y=4ABC ..F
— (ABC ... Fy =4 +B +C+ ..+ F

NCNU_2013 DD 2 21

EXAMPLE 2.2

Find the complement of the functions F; = x'yz' + x'v'zand F, = x(y'z" + vz). By

applying DeMorgan’s theorems as many times as necessary, the complements are
obtained as follows:

Fi=&yz' +xy2) =@yz)'xyz) =(x+y +z2)(x +y +2)
Fp=xG7 +ym)]" =x"+ 0% +yz) =x"+ 7))
=x' T+ +)

— x! _|_ yZI _|_ yIZ

EXAMPLE 2.3

Find the complement of the functions #; and F, of Example 2.2 by taking their duals
and complementing each literal.
1. Fi=xvz' +x'yv'z.
The dual of Fiis (x' + v + z){(x" + v’ + 2).
Complement each literal: (x + y" + 2)(x + y + 2') = Fi.
2. F,=x(y'z' +y2).
The dual of Foisx + (y' + z)(y + 2).
Complement each literal: x" + (v + 2)(v' + ') = F,.

NCNU_2013 DD 2 22

Minterms and Maxterms

* A minterm (standard product): an AND term consists of all literals in their
normal form or in their complement form

* For example, two binary variables x and y, has 4 minterms
—xy, Xy, xy, x'y*
* n variables can be combined to form 2" minterms (m;, j = 0 ~ 2"-1)
* A maxterm (standard sum): an OR term; 2" maxterms (M, j = 0 ~ 2"-1)

« Each maxterm is the complement of its corresponding minterm, and vice versa.

Minterms Maxterms
' y Z Term Designation Term Designation
0 0 0 x'y'z el x+y+z M,
0 0 1 x'y'z) x+y+zf M,
0 1 0 x'yz' ¥y x+y +z M,
0 1 1 x'yz 73 x+y +7z M,
1 0 0 xy'z! e X' +y+z M,
1 0 1 xy'z #Hs x'+y+z M
1 1 0 xyz' e X'+ y +z M,
1 1 1 Xyzg FHt xt+yt+ 7 M,

)D_2 23

Canonical Form: Sum of Minterms

« An Boolean function can be expressed by

— a truth table

— sum of minterms =¥ =X m,

— product of maxterms = f=11 M,

—L=xYz+xz txyz=m;, +m,+m,

— L =X'yz+Xxy'z+ xyz* +xXyz=m;+ ms+tmy; + m,

Table 2.4

Functions of Three Variables
X ¥y z Function f; Function f;
0 0 0 0 0
0 0 L 1 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

NCNU_2013 DD 2 24

Canonical Form: Product of Maxterms

* The complement of a Boolean function
— the minterms that produce a 0
—fi'=my+mytm; +tms+m,=xyz" +xyz" +xyz +xy’z + xyz’
=) =ty ty)ty +2) 'y)Ty +2)
- =MyM,M;M; M,

—h=x+y+)x+y+z)x+y t2)(x'+y+2)
= M, M, M, M,

 Canonical form: any Boolean function expressed as a sum of minterms or a
product of maxterms

NCNU_2013 DD 2 25

Minterm Expansion

« EXAMPLE 2.4: Express the Boolean function F/=A4+B’C as a sum of mintermes.

-F=A+BC=AB+B)+B'C=AB+AB'+B'C
- =AB(C+C)+AB(C+C(C)+(A+A)YB'C

— =ABC+ ABC‘+ AB'C+ AB'C*+ A'B'C
— =AB'C+AB'C'+ AB'C+ ABC* + ABC

— =m; tmy,tms; T mgt+ m,
— F(A,B,C)= X£(1,4,5,6,7)
— or, built the truth table first

Table 2.5

Truth Table for F = A + B'C
A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

NCNU_2013 DD 2 26

Maxterm Expansion

EXAMPLE 2.5: Express the Boolean function F' = xy + x’z as a product of
maxterms.

—F=xy+xz=0y+x)(xy+tz) =@x+x)y+x)x+2)Qy+2)
- =@ +y)xt+2)(ytz)

—x ty=x'tytz =@ ty+to)xt +y+z)
—xtz=xtztyy =@x+ty+zo)(xty +z)

—ytz=yt+tz+txx’=x+y+z)(x’ +y+z)

—F=(x+y+2)x+y +2)x" +y+z)x" +y+2z')=M,M, M, M
— F(x,y,z)=11(0,2,4,5)

— check this result with truth table

NCNU_2013 DD 2 27

Canonical Form Conversion

* Conversion between Canonical Forms
— F(4,B,C) =%(1,4,5,6,7) =» F’(4,B,C) =%(0,2,3) =my,+ m, + m,

— By DeMorgan's theorem

2 9

F'=(my+my+my) =m’gem’yem;
= M, M, M, =T11(0, 2, 3)
-m'=M,
» sum of minterms < product of maxterms

— 1nterchange the symbols 2 and IT and list those numbers missing from the
original form

e Yofl's <& ITof0's

NCNU_2013 DD 2 28

Conversion Example

e F=xy+x'z
e Fx,y,z)=2(1,3,6,7)
e F(x,y,z)=11(0,2,4,5)

Table 2.6
Truth Table for F = xy + x'z
X y z F
0 0 0 0 Minterms
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1 Maxterms
1 1 1 1

NCNU_2013 DD 2 29

Standard Forms

 Canonical forms are baseline expression and seldom used, they are not minimum

* Two standard forms are used usually

— sum of products F,=y"+xy+x'yz
— product of sums Fo=x("+tz)x*+y+2)
¥ x

!

1>
1o

(a) Sum of Products (b) Product of Sums

=

)

£ Bt L T

LHU

* This circuit configuration is referred to as a two-level implementation.

* In general, a two-level implementation is preferred because it produces the least
amount of delay through the gates when the signal propagates from the inputs to
the output. However, the number of inputs to a given gate might not be practical.

NCNU_2013 DD 2 30

Nonstandard Forms

*F;=4B + C(D + E)
=AB+C(D +E)=A4AB +CD + CE

A —]
"— D —
B— _J —
C F; l(;: | F3
D— TN\
S =
E —
(a)AB + C(D + E) (b)AB + CD + CE
FIGURE 2.4

Three- and two-level implementation

« Which kind of gate will have the least delay (high switching speed)?

* The delay through a gate 1s largely dependent on the circuit design and
technology, as well as manufacturing process used. (taught in VLSI design)

NCNU_2013 DD 2 31

Other Logic Operations

» 2" rows 1n the truth table of » binary variables
« 22" functions for n binary variables (each row may either be 0 or 1)

* 16 (222)functi0ns of two binary variables

Table 2.7
Truth Tables for the 16 Functions of Two Binary Variables

X y Fo F F, F3 F, Fs Fg F;, Fg Fo Fio Fyy Fi2 Fi3 Fiq Fis
0 0 0 0 0 0 0 0 0 0 1 1 1 | 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1

1 1
0 1
1 0

1

1
1
1

NCNU_2013 DD 2 32

Table 2.8
Boolean Expressions for the 16 Functions of Two Variables

Operator
Boolean Functions Symbol Name Comments
F,=20 Null Binary constant 0
© F; =xy xX-y AND xandy
= xy’ X/y Inhibition X, butnot y
Fs=x Transfer X
Fy=x'y V/X Inhibition y, but not x
5=y Transfer y
© Fg=xy' +x'y X®y Exclusive-OR X or y, but not both
©@ F=x+y X +y OR xory
© Fs=(x+y) x 1y NOR Not-OR
© Fy=xy+x'y x®Dy) Equivalence x equals y
Fip =y’ y' Complement Not y
Fpu=x+y’ xCy Implication If y, then x
Fp, =x’ ¥ Complement Not x
Fz=x"+Yy XDy Implication If x, then y
@ Fis = (xy)’ x T y NAND Not-AND
Fi5=1 Identity Binary constant 1

NCNU_2013 DD 2 33

Digital Logic Gates of Two Inputs

Graphic Algebraic Truth
Name symbol function table
x y| F
X —] B 0 0] O
AND y }F F=x-y 0o 1! o
1 0] 0O
1 1] 1
x y| F
X 0 0] O
OR =
y :Difs Foxty 0 0| ¢
1 0| 1
1 1] 1
x| F
Inverter x4>07 F F=y N
1l 0
x| F
Buffer X I =]
L~ Foook=x 0ol o
1l 1

NCNU_2013_DD_2_34

Digital Logic Gates of Two Inputs

x yl| F
! 0 0| 1
F F=(xy)
NAND v (xy) o 1l 1
1 0| 1
1 1] 0
x y| F
X : 0 O0f 1
F=(x+
1 0] 0
1 1] 0
x y| F
Exclusive-OR X F=xy'+x'y 0 0] O
(XOR) y r =x@y 0 1] 1
1 0| 1
1 1] 0
x y| F
Exclusive-NOR . F=xy+xy o ol 1
or '
: y =(x@y) 0 1| 0
equivalence 1 ol o
1 1) 1

NCNU_2013 DD 2 35

Extension to Multiple Inputs

» A gate can be extended to multiple inputs
— 1f its binary operation is commutative and associative
* AND and OR are commutative and associative

— commutative: x +y=ypy+x, Xxy=ypx

— associative: (x +y)+z=x+(y+tz)=x+y+z, xy)z=x(yz)=xyz

X x
y—D‘L FooeD y;)>_F
s =D

&
glj
< =

y —

NCNU_2013 DD 2 36

Multiple-input NOR/NAND

« NAND and NOR are commutative but not associative => they are not extendable
iy lz=[x+y) +z]'=&+y)z =xz" +yz
xllo)=k+@+2)T=x@+z)=xy+xz

(xdiydz=(x+yyz

xdyl)=x(y+2)

FIGURE 2.6
Demonstrating the nonassociativity of the NOR operator: (x | y) | z = x| (y | 2)

NCNU_2013_DD_2 37

Multiple-input NOR/NAND

* Multiple-input NOR = a complement of OR gate xlylz)=x+y+z)
e Multiple-input NAND = a complement of AND xtytz)=(xyz)
» The cascaded NAND operations = sum of products

» The cascaded NOR operations = product of sums

X X
yEDH (x+y+2) y —J— (xy2)
< L —

(a) 3-input NOR gate (b) 3-input NAND gate

=
T

FIGURE 2.7
Multiple-input and cascaded NOR and NAND gates

b—— F =[(ABC)' - (DE)']' = ABC + DE

(c) Cascaded NAND gates

b
DeMorgan’s theorems are useful here. NCNU_2013 DD 2 38

Multiple-input XOR/XNOR

» The XOR and XNOR gates are commutative and associative
e Multiple-input XOR gates are uncommon (this is not true anymore!)

* XOR(XNOR) is an odd(even) function: it is equal to 1 if the inputs variables
have an odd(even) number of 1's

L O—

g

=
M
~

F=x®y®Dz

(a) Using 2-input gates

x —
y D7F=x@y®z
7 —

(b) 3-input gate

e e = O O OO
OO, PP, OO b
—_—O = O = O = O
—_ OO O =0

(c) Truth table

FIGURE 2.8
Three-input exclusive-OR gate

NCNU_2013 DD 2 39

Positive and Negative Logic

* Two signal values (High/Low) <=> two logic values (1/0)

— positive logic: H=1; L =0

— negative logic: H=0; L =1

* Positive logic 1s commonly used.

Xy z
0 0 0
0 1 0
1 0 0
1 1 1

(c) Truth table for
positive logic

x oy z
1 1 1
1 0 1
0 1 1
0 0 0

(e) Truth table for
ncgative logic

X

y

(d) Positive logic AND gate

— >

(f) Negative logic OR gatc

X —
<

y

Z

Logic Signal
value value
1 H
0O — L

(a) Positive logic

Logic Signal
value value
0 - H
1 — L

(b) Negative logic

NCNU_2013_DD_2 40

Digital Logic Families

* Digital circuit technology:
— TTL: transistor-transistor logic (dying?)
— ECL: emitter-coupled logic (high speed, high power consumption)
— MOS: metal-oxide semiconductor (NMOS, high density)
— CMOS: complementary MOS (low power)

« CMOS technology now dominates the main stream of IC design, it will be taught
in Introduction to VLSI Design course.

NCNU_2013 DD 2 41

Some Important Parameters of Logic Families

« Fan-out specifies the number of standard loads that the output of a typical gate
can drive without impairing its normal operation. A standard load 1s usually
defined as the amount of current needed by an input of another similar gate in the
same family.

 Fan-in is the number of inputs available in a gate.

» Power dissipation is the power consumed by the gate that must be available
from the power supply.

» Propagation delay is the average transition delay time for a signal to propagate
from 1nput to output. For example, if the input of an inverter switches from 0 to 1,
the output will switch from 1 to 0, but after a time determined by the propagation
delay of the device. The operating speed 1s inversely proportional to the
propagation delay.

» Noise margin is the maximum external noise voltage added to an input signal
that does not cause an undesirable change in the circuit output.

NCNU_2013 DD 2 42

Homework #2

*22(e)(®)

« 2.4 (d) (e)
*2.9 (c)
«2.11 (b)

« 2.14 (b) ()
«2.22 (b)
.2.28

NCNU_2013 DD 2 43

