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Basic Definitions
• Mathematical methods that simplify binary logics or circuits rely primarily on 

Boolean algebra. 
B l l b t f l t t f t d b f d• Boolean algebra: a set of elements, a set of operators, and a number of unproved 
axioms or postulates.

• A set of elements is any collection of objects, usually having a common property. y j , y g p p y
A = {1, 2, 3, 4} indicates that set A has the elements of 1, 2, 3, and 4.

• A binary operator defined on a set S of elements is a rule that assigns, to each 
pair of elements from S a unique element from Spair of elements from S, a unique element from S.

• The most common postulates used to formulate various algebraic structures are 
as follows:
1.Closure. A set S is closed with respect to a binary operator if, for every pair of 

elements of S, the binary operator specifies a rule for obtaining a unique 
element of Selement of S.

2.Associative law. A binary operator * on a set S is said to be associative 
whenever   (x * y) * z = x * (y * z) for all x, y, z,  S
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3.Commutative law. A binary operator * on a set S is said to be commutative 
whenever x * y = y * x for all x, y  S



4.Identity element. A set S is said to have an identity element with respect to a 
binary operation * on S if there exists an element e  S with the property that

e * x = x * e = x for every x  Se  x = x  e = x for every x  S
Example: The element 0 is an identity element with respect to the binary 
operator + on the set of integers I = {c, -3, -2, -1, 0, 1, 2, 3,c}, since  x + 0 = 0 
+ f I+ x = x for any x  I
The set of natural numbers, N, has no identity element, since 0 is excluded 
from the set.

5.Inverse. A set S having the identity element e with respect to a binary operator 
* is said to have an inverse whenever, for every x  S, there exists an element 
y  S such that x * y = ey  S such that    x  y  e
Example: In the set of integers, I, and the operator +, with e = 0, the inverse of 
an element a is (-a), since a + (-a) = 0.

6 Di t ib ti l If * d t bi t t S * i id t b6.Distributive law. If * and • are two binary operators on a set S, * is said to be 
distributive over • whenever    x * (y • z) = (x * y) • (x * z)
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Field
• A field is an example of an algebraic structure.
• The field of real numbers is the basis for arithmetic and ordinary algebra.

– The binary operator + defines addition.
– The additive identity is 0.

The additi e in erse defines s btraction– The additive inverse defines subtraction.
– The binary operator • defines multiplication.
– The multiplicative identity is 1.The multiplicative identity is 1.
– For a ≠ 0, the multiplicative inverse of a = 1/a defines division (i.e., a •1/a = 1).
– The only distributive law applicable is that of • over +:

a • (b + c) = (a • b) + (a • c)
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Axiomatic Definition of Boolean Algebra
• 1854: George Boole developed an algebraic system now called Boolean algebra.
• 1904: E. V. Huntington formulated a set of postulates that formally define the 

Boolean algebraBoolean algebra 
• 1938: C. E. Shannon introduced a two-valued Boolean algebra called switching 

algebra that represented the properties of bistable electrical switching circuits

• Two binary operators, + and •, (Huntington) postulates:
1 (a) The structure is closed with respect to the operator +1. (a) The structure is closed with respect to the operator +.

(b) The structure is closed with respect to the operator •.
2. (a) The element 0 is an identity element with respect to +; that is, x + 0 = 0 + x = x.

(b) The element 1 is an identity element with respect to •; that is x • 1 = 1 • x = x(b) The element 1 is an identity element with respect to •; that is, x • 1 = 1 • x = x.
3. (a) The structure is commutative with respect to +; that is, x + y = y + x.

(b) The structure is commutative with respect to • ; that is, x • y = y • x.
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4. (a) The operator • is distributive over +; that is, x • (y + z) = (x • y) + (x • z).
(b) The operator + is distributive over •; that is, x + (y • z) = (x + y) • (x + z).



5. For every element x  B, there exists an element x  B (called the complement of x)
such that (a) x + x = 1 and (b) x • x = 0.

6 There exist at least two elements x y  B such that x ≠ y6. There exist at least two elements x, y  B such that x ≠ y.

• Comparing Boolean algebra with arithmetic and ordinary algebra
1. Huntington postulates do not include the associative law. However, this law holds for 

Boolean algebra and can be derived (for both operators) from the other postulates.
2 The distributive law of + over • (i e x + (y • z) = (x + y) • (x + z) ) is valid for Boolean2. The distributive law of + over  (i.e., x + (y z)  (x + y)  (x + z) ) is valid for Boolean 

algebra, but not for ordinary algebra.
3. Boolean algebra does not have additive or multiplicative inverses; therefore, there are 

no subtraction or division operationsno subtraction or division operations.
4. Postulate 5 defines an operator called the complement that is not available in ordinary 

algebra.
5. Ordinary algebra deals with the real numbers, which constitute an infinite set of 

elements. Boolean algebra deals with the as yet undefined set of elements, B, but in the 
two­valued Boolean algebra defined next (and of interest in our subsequent use of that 
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algebra), B is defined as a set with only two elements, 0 and 1.



Two-valued Boolean Algebra
• B = {0,1}
• The rules of operations

x y xy  x y x+y  x x
0 0 0 0 0 0 0 1

AND OR NOT

0  0 0 0 0 0 0 1
0  1 0  0  1 1  1 0 
1  0 0 1 0 1

• Closure: the result of each operation is either 1 or 0 and 1, 0  B.

1  1 1  1  1 1    

• Identity elements: 0 for + and 1 for ‧
• The commutative laws are obvious from the symmetry of the binary operator 

tablestables.
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• Distributive laws:
– x‧(y + z) = (x‧y) + (x‧z)
– x+ (y‧z) = (x+y)‧(x+z)

y z x+(y z) x+y x+z (x+y) (x+z)y‧z x+(y‧z)
0            0
0           0
0           0
1 1

x+y x+z (x+y)‧(x+z)
0 0            0
0 1 0
1 0            0
1 1 11         1

0         1
0          1
0           1
1 1

1 1            1
1 1            1
1 1            1
1 1            1
1 1 1
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• Complement
– x+x'=1:  0+0'=0+1=1; 1+1'=1+0=1
– x‧x'=0:    0‧0'=0‧1=0; 1‧1'=1‧0=0

• Has two distinct elements 1 and 0, with 0 ≠ 1
We ha e j st established a t o al ed Boolean algebra:• We have just established a two­valued Boolean algebra:
– a set of two elements
– + : OR operation; ‧ : AND operation+ : OR operation; : AND operation
– a complement operator: NOT operation
– Binary logic is a two-valued Boolean algebra
– also called “switching algebra” by engineers
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Basic Theorems and Properties of Boolean Algebra

• Duality
– the binary operators are interchanged; AND  OR
– the identity elements are interchanged; 1  0
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• Theorem 1(a): x+x = x
x+x = (x+x) •1 by postulate: 2(b)

( ) ( ) ( )= (x+x) (x+x') 5(a)
= x+xx' 4(b)
= x+0 5(b) x 0 5(b)
= x 2(a)

• Theorem 1(b): x • x = x
x • x = x x + 0 by postulate: 2(a)

= xx + xx' 5(b)
= x (x + x') 4(a)= x (x + x ) 4(a)
= x • 1 5(a)
= x 2(b)

• Theorem 1(b) is the dual of theorem 1(a)
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• Theorem 2(a): x + 1 = 1 
x + 1 = 1 • (x + 1) by postulate: 2(b)

= (x + x')(x + 1) 5(a)
= x + x' • 1 4(b)

+ ' 2(b)= x + x' 2(b)
= 1 5(a)

• Theorem 2(b): x • 0 = 0 by dualityTheorem 2(b): x 0  0 by duality
• Theorem 3: (x')' = x

– Postulate 5 defines the complement of x, x + x' = 1 and x • x' = 0
– The complement of x' is x is also (x')'
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• Theorem 6(a): x + xy = x
x + xy = x • 1 + xy by postulate: 2(b)

= x (1 +y) 4(a)
= x • 1 2(a)

2(b)= x 2(b)
• Theorem 6(b): x (x + y) = x by duality
• By means of truth tableBy means of truth table

x y xy x + xy 
0 0 0 00 0 0 0
0 1 0 0 
1 0 0 1 
1 1 1 1 
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DeMorgan's Theorems
– (x+y)' = x' y‘

x y x+y (x+y) x y xyy y ( y) y y
0 0 0 1 1 1 1 
0 1 1 0 1 0 0 
1 0 1 0 0 1 0
1 1 1 0 0 0 0 

– (x y)' = x' + y'

x y xy ( )   + x y xy (xy) x y x+y
0 0 0 1 1 1 1 
0 1 0 1 1 0 10 1 0 1 1 0 1
1 0 0 1 0 1 1 
1 1 1 0 0 0 0
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Operator Precedence
• The operator precedence for evaluating Boolean expressions is

1. parentheses
2. NOT
3. AND
4 OR4. OR

• Examples
– x y' + zx y + z
– (x y + z)'
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Boolean Functions
• A Boolean function is an algebraic expression consists of

– binary variables
– binary operators OR and AND
– unary operator NOT

parentheses– parentheses
• A Boolean function expresses the logical relationship between binary variables 

and is evaluated by determining the binary value of the expression for all possible 
values of the variables.

• Examples
F ’ F 1 if 1 if 0 d 1 h F 0– F1= x + y z’  F1 = 1 if x = 1 or if y = 0 and z = 1, others F1 = 0.

– F2 = x' y' z + x' y z + x y’
F = 1 if (x = 0 y = 0 z = 1) or (x = 0 y = 1 z = 1) or (x = 1 y = 0)F2  1 if (x  0, y  0, z  1) or (x  0, y  1, z  1) or (x  1, y  0), 
others F2 = 0.

What are the others?
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What are the others?



Truth Table
• Boolean function can be represented in a truth table. 
• Truth table has 2n rows where n is the number of variables in the function. 
• The binary combinations for the truth table are obtained from the binary numbers 

by counting from 0 through 2n - 1.

Implementation of F1 with logic gates

F1= x + y z’ 
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Equivalent Logics
F2 = x’y’z + x’yz + xy’ 

• Boolean function can be 
represented in truth table 
only in one way

2 y y y
= x’z(y’ + y) + xy’ 
= x’z + xy’

only in one way.
• In algebraic form, it can be 

expressed in a variety of 
ways, all of which have 
equivalent logic.

• Using Boolean algebra, it isUsing Boolean algebra, it is 
possible to obtain a simpler 
expression for the same 
function with less numberfunction with less number 
of gates and inputs to the 
gate. 

• Designers work on reducing 
the complexity and number 
of gates to significantly 
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Algebraic Manipulation
• To minimize Boolean expressions

– literal: a complemented or un-complemented variable (an input to a gate)
– term: an implementation with a gate
– The minimization of the number of literals and the number of terms => a 

circuit with less equipmentcircuit with less equipment

F2 = x’y’z + x’yz + xy’  3 terms, 8 literals
= x’z(y’ + y) + xy’ x z(y  + y) + xy  
= x’z + xy’  2 terms, 4 literals

• Functions of up to five variables can be simplified by the map method described 
in the next chapter. 

• For complex Boolean functions and many different outputs designers of digital• For complex Boolean functions and many different outputs, designers of digital 
circuits use computer minimization programs that are capable of producing 
optimal circuits with millions of logic gates.
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Minimization of Boolean Function
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Complement of a Function
• F’ is obtained from an interchange of 0's for 1's and 1's for 0's in the value of F
• The complement of a function may be derived using DeMorgan's theorem.
• Three-variable DeMorgan's theorem:

(A + B + C)’ = (A + X)’ let B + C = X
A’X’ b DeMorgan's= A’X’ by DeMorgan's

= A’(B + C)’ X = B + C
= A’(B’C’) by DeMorgan's A (B C ) by DeMorgan s
= A’B’C’ associative

• Generalized form
– (A + B + C + ... + F)’ = A’B’C’ ... F’
– (ABC ... F)’ = A’ + B’ + C’+ ... + F’
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EXAMPLE 2.2

EXAMPLE 2 3EXAMPLE 2.3
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Minterms and Maxterms
• A minterm (standard product): an AND term consists of all literals in their 

normal form or in their complement form
• For example two binary variables x and y has 4 minterms• For example, two binary variables x and y, has 4 minterms

– xy, xy', x'y, x'y‘
• n variables can be combined to form 2n minterms (mj, j = 0 ~ 2n-1)n variables can be combined to form 2 minterms (mj, j  0  2 1)
• A maxterm (standard sum): an OR term; 2n maxterms (Mj, j = 0 ~ 2n-1)
• Each maxterm is the complement of its corresponding minterm, and vice versa.
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Canonical Form: Sum of Minterms
• An Boolean function can be expressed by

– a truth table
– sum of minterms f = Σ mj

– product of maxterms f = Π Mj

f ' ' + ' ‘ + + +– f1 = x'y'z + xy'z  + xyz = m1 + m4 +m7

– f2 = x'yz + xy'z + xyz‘ + xyz = m3 + m5 +m6 + m7
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Canonical Form: Product of Maxterms
• The complement of a Boolean function

– the minterms that produce a 0
– f1' = m0 + m2 +m3 + m5 + m6 = x'y'z‘ + x'yz‘ + x'yz + xy'z + xyz'
– f1 = (f1’)’ = (x + y + z)(x + y‘ + z) (x + y‘ + z') (x‘ + y + z')(x‘ + y‘ + z)

M M M M M– = M0 M2 M3 M5 M6

– f2 = (x + y + z)(x + y + z’)(x + y’ + z)(x’ + y + z)
= M0 M1 M2 M40 1 2 4

• Canonical form: any Boolean function expressed as a sum of minterms or a 
product of maxterms
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Minterm Expansion
• EXAMPLE 2.4: Express the Boolean function F=A+B’C as a sum of minterms.

– F = A + B'C = A (B + B') + B'C = AB + AB' + B'C
– = AB(C + C') + AB'(C + C') + (A + A')B'C
– = ABC + ABC‘ + AB'C + AB'C‘ + A'B'C

A'B'C + AB'C' + AB'C + ABC‘ + ABC– = A'B'C + AB'C' + AB'C + ABC‘ + ABC 
– = m1 + m4 +m5 + m6 + m7

– F(A,B,C) = Σ (1, 4, 5, 6, 7)F(A,B,C)   Σ (1, 4, 5, 6, 7)
– or, built the truth table first
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Maxterm Expansion
EXAMPLE 2.5: Express the Boolean function F = xy + x’z as a product of 
maxterms.

– F = xy + x'z = (xy + x') (xy + z) = (x + x')(y + x')(x + z)(y + z)F  xy + x z  (xy + x ) (xy + z)   (x + x )(y + x )(x + z)(y + z)
– = (x’ + y)(x + z)(y + z)

– x‘ + y = x' + y + zz‘ = (x‘ + y + z)(x‘ + y + z')
– x + z = x + z + yy’ = (x + y + z)(x + y’ +z)

y + z = y + z + xx’ = (x + y + z)(x’ + y +z)– y + z = y + z + xx  = (x + y + z)(x  + y +z)

– F = (x + y + z)(x + y‘ + z)(x‘ + y + z)(x‘ + y + z') = M0 M2 M4 M5

– F(x,y,z) = Π (0,2,4,5)

h k thi lt ith t th t bl– check this result with truth table
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Canonical Form Conversion
• Conversion between Canonical Forms

– F(A,B,C) = (1,4,5,6,7)   F’(A,B,C) = (0,2,3) = m0 + m1 + m2

– By DeMorgan's theorem

F = (m0 + m1 + m2)’ = m’0 • m’2 • m’3

= M0 M2 M3 = Π(0, 2, 3)

– mj' = Mjj j

• sum of minterms product of maxterms
– interchange the symbols  and  and list those numbers missing from the 

i i l foriginal form
•  of 1's   of 0's
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Conversion Example
• F = xy + xz
• F(x, y, z) = (1, 3, 6, 7)
• F(x, y, z) =  (0, 2, 4, 5)
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Standard Forms
• Canonical forms are baseline expression and seldom used, they are not minimum
• Two standard forms are used usually

– sum of products F1 = y' + xy + x'yz'
– product of sums F2 = x(y‘ + z)(x‘ + y + z’)

• This circuit configuration is referred to as a two­level implementation.
• In general, a two­level implementation is preferred because it produces the least 

amount of delay through the gates when the signal propagates from the inputs to
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amount of delay through the gates when the signal propagates from the inputs to 
the output. However, the number of inputs to a given gate might not be practical.



Nonstandard Forms

• F3 = AB + C(D + E)
= AB + C(D + E) = AB + CD + CE AB  C(D  E) AB  CD  CE

• Which kind of gate will have the least delay (high switching speed)?
• The delay through a gate is largely dependent on the circuit design and 
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technology, as well as manufacturing process used. (taught in VLSI design)



Other Logic Operations
• 2n rows in the truth table of n binary variables
• 22n functions for n binary variables (each row may either be 0 or 1)

2• 16 (222)functions of two binary variables
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Digital Logic Gates of Two Inputs
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Digital Logic Gates of Two Inputs
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Extension to Multiple Inputs
• A gate can be extended to multiple inputs

– if its binary operation is commutative and associative
• AND and OR are commutative and associative

– commutative:  x + y = y + x ,    xy = yx
associati e: ( + ) + + ( + ) + + ( ) ( )– associative: (x + y) + z = x + (y + z) = x + y + z ,  (x y)z = x(y z) = x y z

Fx
y
z

F
x
y
z

x x
F

x
y
z

Fx
y
z
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Multiple-input NOR/NAND
• NAND and NOR are commutative but not associative => they are not extendable

(x ↓ y) ↓ z = [(x + y)’ + z]’ = (x + y) z’ = xz’ + yz’
x ↓ (y ↓ z) = [x + (y + z)’]’ = x’(y + z) = x’y + x’z
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Multiple-input NOR/NAND
• Multiple-input NOR = a complement of OR gate (x ↓ y ↓ z) = (x + y + z)’
• Multiple-input NAND = a complement of AND (x ↑ y ↑ z) = (x y z)’
• The cascaded NAND operations = sum of products
• The cascaded NOR operations = product of sums
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Multiple-input XOR/XNOR
• The XOR and XNOR gates are commutative and associative
• Multiple-input XOR gates are uncommon (this is not true anymore!)
• XOR(XNOR) is an odd(even) function: it is equal to 1 if the inputs variables 

have an odd(even) number of 1's
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Positive and Negative Logic
• Two signal values (High/Low) <=> two logic values (1/0)

– positive logic: H = 1; L = 0
– negative logic: H = 0; L = 1

• Positive logic is commonly used.
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Digital Logic Families
• Digital circuit technology:

– TTL: transistor-transistor logic (dying?)
– ECL: emitter-coupled logic (high speed, high power consumption)
– MOS: metal-oxide semiconductor (NMOS, high density)

CMOS: complementar MOS (lo po er)– CMOS: complementary MOS (low power)
• CMOS technology now dominates the main stream of IC design, it will be taught 

in Introduction to VLSI Design course.
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Some Important Parameters of Logic Families
• Fan­out specifies the number of standard loads that the output of a typical gate 

can drive without impairing its normal operation. A standard load is usually 
defined as the amount of current needed by an input of another similar gate in thedefined as the amount of current needed by an input of another similar gate in the 
same family.

• Fan­in is the number of inputs available in a gate.
• Power dissipation is the power consumed by the gate that must be available 

from the power supply.
• Propagation delay is the average transition delay time for a signal to propagate• Propagation delay is the average transition delay time for a signal to propagate 

from input to output. For example, if the input of an inverter switches from 0 to 1, 
the output will switch from 1 to 0, but after a time determined by the propagation 
d l f h d i Th i d i i l i l hdelay of the device. The operating speed is inversely proportional to the 
propagation delay.

• Noise margin is the maximum external noise voltage added to an input signal g g p g
that does not cause an undesirable change in the circuit output.
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Homework #2

• 2.2 (e) (f)

• 2.4 (d) (e)

• 2.9 (c)2.9 (c)

• 2.11 (b)

• 2.14 (b) (c)

2 22 (b)• 2.22 (b)

• 2.28
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