UNIT - III

Introduction to Hadoop and MapReduce Programming

Hadoop Overview, HDFS (Hadoop Distributed File System), Processing-
Data with Hadoop, Managing Resources and Applications with Hadoop
YARN (Yet another Resource Negotiator).

Introduction to MAPREDUCE Programming:

Introduction, Mapper,

Reducer, Combiner, Partitioner, Searching, Sorting, Compression.

Q) Explain the differences between Hadoop and RDBMS

Parameters | RDBMS Hadoop
System Relational Database | Node based flat structure
Management system
Data Suitable for structured data | Suitable for Structured,
unstructured data, supports
variety of formats(xml, json)
Processing | OLTP Analytical, big data processing
Hadoop clusters, node require
any consistent relationships
between data
Choice When the data needs |Big data processing, which
consistent relationship does not require any
consistent relationships
between data
Processor Needs expensive hardware or | In commodity hardware less
high-end processors to store | configure hardware.
huge volumes of data
Cost Cost around $10,000 to|Cost around $4000 per

$14,000 per terabytes of
storage

terabytes of storage.

Q) What is Hadoop? Explain features of hadoop.

e Hadoop is an open source framework that is meant for storage and
processing of big data in a distributed manner.

e It is the best solution for handling big data challenges.

Some important features of Hadoop are —

«Open Source — Hadoop is an open source framework which means it
is available free of cost. Also, the users are allowed to change the
source code as per their requirements.

eDistributed Processing — Hadoop supports distributed processing of
data i.e. faster processing. The data in Hadoop HDFS is stored in a
distributed manner and MapReduce is responsible for the parallel
processing of data.

eFault Tolerance — Hadoop is highly fault-tolerant. It creates three
replicas for each block (default) at different nodes.

eReliability — Hadoop stores data on the cluster in a reliable manner
that is independent of machine. So, the data stored in Hadoop
environment is not affected by the failure of the machine.

eScalability — It is compatible with the other hardware and we can
easily add/remove the new hardware to the nodes.

High Availability — The data stored in Hadoop is available to access
even after the hardware failure. In case of hardware failure, the data
can be accessed from another node.

The core components of Hadoop are —

1. HDFS: (Hadoop Distributed File System) — HDFS is the basic
storage system of Hadoop. The large data files running on a cluster
of commodity hardware are stored in HDFS. It can store data in a
reliable manner even when hardware fails. The key aspects of
HDFS are:

a. Storage component
b. Distributes data across several nodes
c. Natively redundant.

2. Map Reduce: MapReduce is the Hadoop layer that is responsible
for data processing. It writes an application to process
unstructured and structured data stored in HDFS.

It is responsible for the parallel processing of high volume of data
by dividing data into independent tasks. The processing is done in
two phases Map and Reduce.
The Map is the first phase of processing that specifies complex
logic code and the
Reduce is the second phase of processing that specifies light-
weight operations.
The key aspects of Map Reduce are:

a. Computational frame work

b. Splits a task across multiple nodes

c. Processes data in parallel

Q) Explain Hadoop Architecture with a neat sketch.
NAME NODE
MASTER NODE

JOB TRACKER

SLAVE NODE SLAVE NODE SLAVE NODE SLAVE NODE

TASK TRAKER TASK TRAKER TASK TRAKER TASK TRAKER

DATA NODE DATA NODE DATA NODE DATA NODE

MAP | REDUCE MAP © REDUCE MAP © REDUCE MAP | REDUCE

Fig. Hadoop Architecture
Hadoop Architecture is a distributed Master-slave architecture.
Master HDF'S: Its main responsibility is partitioning the data storage
across the slave nodes. It also keep track of locations of data on
Datanodes.

Master Map Reduce: It decides and schedules computation task on
slave nodes.

NOTE: Based on marks for the question explain hdfs daemons and
mapreduce daemons.

Q) Explain the following
a) Modules of Apache Hadoop framework

There are four basic or core components:
Hadoop Common: It is a set of common utilities and libraries which handle
other Hadoop modules. It makes sure that the hardware failures are
managed by Hadoop cluster automatically.
Hadoop YARN: It allocates resources which in turn allow different users to
execute various applications without worrying about the increased
workloads.
HDFS: It is a Hadoop Distributed File System that stores data in the form of
small memory blocks and distributes them across the cluster. Each data is
replicated multiple times to ensure data availability.
Hadoop MapReduce: It executes tasks in a parallel fashion by distributing
the data as small blocks.

b) Hadoop Modes of Installations

i. Standalone, or local mode: which is one of the least commonly
used environments, which only for running and debugging of
MapReduce programs. This mode does not use HDFS nor it
launches any of the hadoop daemon.

ii. Pseudo-distributed mode(Cluster of Omne), which runs all
daemons on single machine. It is most commonly used in
development environments.

iii. Fully distributed mode, which is most commonly used in
production environments. This mode runs all daemons on a
cluster of machines rather than single one.

c) XML File configrations in Hadoop.

core-site.xml - This configuration file contains Hadoop core
configuration settings, for example, I/O settings, very common
for MapReduce and HDFS.

mapred-site.xml — This configuration file specifies a framework
name for MapReduce by setting mapreduce.framework.name
hdfs-site.xml — This configuration file contains HDFS daemons
configuration settings. It also specifies default block permission
and replication checking on HDFS.

yarn-site.xml — This configuration file specifies configuration
settings for ResourceManager and NodeManager.

https://intellipaat.com/tutorial/hadoop-tutorial/mapreduce-yarn/
https://intellipaat.com/tutorial/hadoop-tutorial/hdfs-overview/

Q) Explain features of HDFS. Discuss the design of Hadoop
distributed file system and concept in detail.

HDFS:

(Hadoop Distributed File System) — HDFS is the basic storage

system of Hadoop. The large data files running on a cluster of commodity
hardware are stored in HDFS. It can store data in a reliable manner even
when hardware fails. The key aspects of HDFS are:
e HDFS is developed by the inspiration of Google File System(GFS).
e Storage component: Stores data in hadoop
e Distributes data across several nodes: divides large file into blocks
and stores in various data nodes.
Natively redundant: replicates the blocks in various data nodes.
High Throughput Access: Provides access to data blocks which are
nearer to the client.
® Re-replicates the nodes when nodes are failed.

Storage
Component
of Hadoop

Highly Distributed

Fault- P
Tolerance File System

Re-
Replication
on nodes
that failed

Inspired by
Google File
System

Provides
High
Throughput
Access

Replication

Fig. Features of HDFS

HDFS Daemons:
(i) NameNode

The NameNode is the master of HDFS that directs the slave
DataNodes to perform I/0 tasks.

Blocks: HDF'S breaks large file into smaller pieces called blocks.
rackID: NameNode uses rackID to identify data nodes in the
rack. (rack is a collection of datanodes with in the cluster)
NameNode keep track of blocks of a file.

File System Namespace: NameNode is the book keeper of
HDFS. It keeps track of how files are broken down into blocks
and which DataNode stores these blocks. It is a collection of
files in the cluster.

FsImage: file system namespace includes mapping of blocks of
a file, file properties and is stored in a file called FsImage.
EditLog: namenode uses an EditLog (transaction log) to record
every transaction that happens to the file system metadata.
NameNode is single point of failure of Hadoop cluster.

HDFS KEY POINTS

BLOCK DEFAULT DEFAULT BLOCK
STRUCTURED FILE REPLICATION SIZE: 64MB/128MB
FACTOR: 3

NameNode

e | e e]

_L)ataNr;x: 3
Block B

Client
application

Hadoop e

system chent \

DataNode 1 DataNode 2 DataNode 3
— Em @
[\ =

= ;
Pipeline Write

Fig. HDFS Architecture
(ii) DataNode

e Multiple data nodes per cluster. Each slave machine in the
cluster have DataNode daemon for reading and writing HDFS
blocks of actual file on local file system.

e During pipeline read and write DataNodes communicate with
each other.

e [t also continuously Sends “heartbeat” message to NameNode
to ensure the connectivity between the Name node and the data
node.

e [f no heartbeat is received for a period of time NameNode
assumes that the DataNode had failed and it is re-replicated.

MameMode

Rereplicate
heartbeat No heartbeat

14

DataMode DataNode
DataMode

Fig. Interaction between NameNode and DataNode.

(iii)Secondary name node

e Takes snapshot of HDFS meta data at intervals specified in the
hadoop configuration.
Memory is same for secondary node as NameNode.
But secondary node will run on a different machine.
In case of name node failure secondary name node can be
configured manually to bring up the cluster i.e; we make
secondary namenode as name node.

File Read operation:
The steps involved in the File Read are as follows:

1.

2.

The client opens the file that it wishes to read from by calling open()
on the DFS.

The DFS communicates with the NameNode to get the location of data
blocks. NameNode returns with the addresses of the DataNodes that
the data blocks are stored on.

Subsequent to this, the DFS returns an FSD to client to read from the

. Client then calls read() on the stream DFSInputStream, which has

addresses of DataNodes for the first few block of the file.
Client calls read() repeatedly to stream the data from the DataNode.

. When the end of the block is reached, DFSInputStream closes the

connection with the DataNode. It repeats the steps to find the best
DataNode for the next block and subsequent blocks.

. When the client completes the reading of the file, it calls close() on the

FSInputStream to the connection.

1 Distributed 2: get block lncations
HDFS lopen FlleSystem 1 v 1 il
client 3 read
"f;_"c'l' FSData namenode
: InputStream _—
client JVM 4
client node i

& rear!é 5:read

datanode datanode datanode

Fig. File Read Anatomy

File Write operation:

1.
2.

3.

The client calls create() on DistributedFileSystem to create a file.

An RPC call to the namenode happens through the DFS to create a
new file.

As the client writes data, data is split into packets by
DFSOutputStream, which is then writes to an internal queue, called
data queue. Datastreamer consumes the data queue.

4. Data streamer streams the packets to the first DataNode in the
pipeline. It stores packet and forwards it to the second DataNode in
the pipeline.

5. In addition to the internal queue, DFSOutputStream also manages on
“Ackqueue” of the packets that are waiting for acknowledged by
DataNodes.

6. When the client finishes writing the file, it calls close() on the stream.

HOFS

; y “r"""..
= 2 7: complete NameNode
dient "';-.., L g "“"”“'"'"'”""“'“"'"“"'
; :f:.._ FSData namenode
3 QutputStream
dient JVM -

)

client node

4:write packet 5: ack packet

v i
.4 . .4
Pipeline of Datalode [Dataode [l Datalode
datanodes | 5 5

datanode datanode datanode

Fig. File Write Anatomy

Special features of HDFS:

1. Data Replication: There is absolutely no need for a client application
to track all blocks. It directs client to the nearest replica to ensure
high performance.

2. Data Pipeline: A client application writes a block to the first
DataNode in the pipeline. Then this DataNode takes over and forwards
the data to the next node in the pipeline. This process continues for
all the data blocks, and subsequently all the replicas are written to
the disk.

| |
[Brot—in o]

[=H
—

RACK 1 RACK2
Fig. File Replacement Strategy

Q) Explain basic HDFS File operations with an example.

1.

10.

Creating a directory:
Syntax: hdfs dfs -mkdir <path>
Eg. hdfs dfs -mkdir /chp

Remove a file in specified path:
Syntax: hdfs dfs -rm <src>
Eg. hdfs dfs -rm /chp/abc.txt

. Copy file from local file system to hdfs:

Syntax: hdfs dfs —copyFromLocal <src> <dst>

Eg. hdfs dfs —copyFromLocal /home/hadoop/sample.txt

/chp/abcl.txt

. To display list of contents in a directory:

Syntax: hdfs dfs -Is <path>
Eg. hdfs dfs -1s /chp

. To display contents in a file:

Syntax: hdfs dfs —cat <path>

Eg. hdfs dfs —cat /chp/abcl.txt

Copy file from hdfs to local file system:
Syntax: hdfs dfs —copyToLocal <src <dst>

Eg. hdfs dfs —copyToLocal
/home/hadoop/Desktop/sample.txt

To display last few lines of a file:
Syntax: hdfs dfs —tail <path>
Eg. hdfs dfs —tail /chp/abcl.txt

. Display aggregate length of file in bytes:

Syntax: hdfs dfs —du <path>
Eg. hdfs dfs —-du /chp

Syntax: hdfs dfs —count <path>
Eg. hdfs dfs —count /chp
o/p: 1160

Remove a directory from hdfs
Syntax: hdfs dfs -rmr <path>
Eg. hdfs dfs rmr /chp

/chp/abcl.txt

. To count no.of directories, files and bytes under given path:

Q) Explain the importance of MapReduce in Hadoop environment for
processing data.

e MapReduce programming helps to process massive amounts of
data in parallel.

e Input data set splits into independent chunks. Map tasks
process these independent chunks completely in a parallel
manner.

e Reduce task-provides reduced output by combining the output
of various mapers. There are two daemons associated with
MapReduce Programming: JobTracker and TaskTracer.

JobTracker:

JobTracker is a master daemon responsible for executing over
MapReduce job.

It provides connectivity between Hadoop and application.

Whenever code submitted to a cluster, JobTracker creates the
execution plan by deciding which task to assign to which node.

It also monitors all the running tasks. When task fails it automatically
re-schedules the task to a different node after a predefined number of
retires.

There will be one job Tracker process running on a single Hadoop
cluster. Job Tracker processes run on their own Java Virtual machine
process.

Client

JobTracker

e

TaskTracker TaskTracker | TaskTracker TaskTracker

Fig. Job Tracker and Task Tracker interaction

TaskTracker:
This daemon is responsible for executing individual tasks that is
assigned by the Job Tracker.

Task Tracker continuously sends heartbeat message to job tracker.
When a job tracker fails to receive a heartbeat message from a

TaskTracker, the JobTracker assumes that the TaskTracker has failed
and resubmits the task to another available node in the cluster.

Map Reduce Framework

Phases: Daemons:
Map: Converts input into key- | JobTracker: Master, Schedules
value pairs. Task

Reduce: Combines output of | TaskTracker: Slave, Execute task
mappers and produces a reduced
result set.

MapReduce working:

MapReduce divides a data analysis task into two parts — Map and

Reduce. In the example given below: there two mappers and one

reduce.

Each mapper works on the partial data set that is stored on that node

and the reducer combines the output from the mappers to produce

the reduced result set.

Steps:

1. First, the input dataset is split into multiple pieces of data.

2. Next, the framework creates a master and several slave processes
and executes the worker processes remotely.

3. Several map tasks work simultaneously and read pieces of data
that were assigned to each map task.

4. Map worker uses partitioner function to divide the data into
regions.

5. When the map slaves complete their work, the master instructs the
reduce slaves to begin their work.

6. When all the reduce slaves complete their work, the master
transfers the control to the user program.

TaskTracker

JobTracker

TaskTracker

Fig. MapReduce Programming Architecture

A MapReduce programming using Java requires three classes:
1. Driver Class: This class specifies Job configuration details.
2. MapperClass: this class overrides the MapFunction based on the
problem statement.
3. Reducer Class: This class overrides the Reduce function based on the
problem statement.
NOTE: Based on marks given write MapReduce example if necessary with
program.

Q) Explain difference between HadooplX and Hadoop2X

Limitations of Hadoop 1.0: HDFS and MapReduce are core components,
while other components are built around the core.
1. Single namenode is responsible for entire namespace.
2. It is Restricted processing model which is suitable for batch-oriented
mapreduce jobs.
3. Not supported for interactive analysis.
4. Not suitable for Machine learning algorithms, graphs, and other
memory intensive algorithms
5. MapReduce is responsible for cluster resource management and data
Processing.
HDFS Limitation: The NameNode can quickly become overwhelmed with
load on the system increasing. In Hadoop 2.x this problem is resolved.

Hadoop 2: Hadoop 2.x is YARN based architecture. It is general processing
platform. YARN is not constrained to MapReduce only. One can run multiple
applications in Hadoop 2.x in which all applications share common resource
management.

Hadoop 2.x can be used for various types of processing such as Batch,
Interactive, Online, Streaming, Graph and others.

HDFS 2 consists of two major components

a) NameSpace: Takes care of file related operations such as creating
files, modifying files and directories

b) Block storage service: It handles data node cluster management
and replication.

HDFS 2 Features:

Horizontal scalability: HDFS Federation uses multiple independent
NameNodes for horizontal scalability. The DataNodes are common storage
for blocks and shared by all NameNodes. All DataNodes in the cluster
registers with each NameNode in the cluster.

High availability: High availability of NameNode is obtained with the help
of Passive Standby NameNode.

Active-Passive NameNode handles failover automatically. All namespace
edits are recorded to a shared NFS(Network File Storage) Storage and there
is a single writer at an point of time.

Passive NameNode reads edits from shared storage and keeps updated
metadata information.

Incase of Active NameNode failure, Passive NameNode becomes an Active
NameNode automatically. Then it starts writing to the shared storage.

Active
NameNode

Write

Fig. Active and Passive

MapReduce

{
MapReduce

[Clustér resource management
& data processing)

HDFS

[redundant, reliable storage)

Passive
NameNode
Shared Edit

L
083 Read

NameNode Interaction

Others

data processing) (data processing)

YARN

(cluster resource management)

HDFS

(redundant, reliable storage]

Fig. Comparing Hadoop1.0 and Hadoop 2.0

Hadoop1lX

Hadoop2X

Supports MapReduce (MR)
processing model only. Does
not support non-MR tools

Allows working in MR as well as
other distributed computing models
like Spark, & HBase coprocessors.

MR does both processing and
cluster-resource management.

YARN does cluster resource
management and processing is
done using different processing
models.

Has limited scaling of nodes.
Limited to 4000 nodes per
cluster

Has better scalability. Scalable up
to 10000 nodes per cluster

Works on concepts of slots -
slots can run either a Map task
or a Reduce task only.

Works on concepts of containers.
Using containers can run generic
tasks.

A single Namenode to manage
the entire namespace.

Multiple Namenode servers manage
multiple namespaces.

Has Single-Point-of-Failure
(SPOF) because of single
Namenode.

Has to feature to overcome SPOF
with a standby Namenode and in
the case of Namenode failure, it is
configured for automatic recovery.

MR APlis compatible with
Hadooplx. A program written
in Hadoopl executes
in Hadoop1x without any
additional files.

MR API requires additional files for
a program written in Hadooplx to
execute in Hadoop2x.

8 Has a limitation to serve as a | Can serve as a platform for a wide
platform for event processing, | variety of data analytics-possible to

streaming and real-time | run event processing, streaming
operations. and real-time operations.

9 Does not support Microsoft | Added support for Microsoft
Windows windows

Q) Explain in detail about YARN?

The fundamental idea behind the YARN(Yet Another Resource Negotiator)
architecture is to splitting the JobTracker reponsibility of resource
management and job scheduling/monitoring into separate daemons.

Basic concepts of YARN are Application and Container.
Application is a job submitted to system.
Ex: MapReduce job.
Container: Basic unit of allocation. Replaces fixed map/reduce slots. Fine-
grained resource allocation across multiple resource type
Eg. Container_0: 2GB, 1CPU
Container_1: 1GB, 6CPU

Daemons that are part of YARN architecture are:

1. Global Resource Manager: The main responsibility of Global Resource
Manager is to distribute resources among various applications.

It has two main components:

Scheduler: The pluggable scheduler of ResourceManager decides
allocation of resources to various running applications. The scheduler is just
that, a pure scheduler, meaning it does NOT monitor or track the status of
the application.

Application Manager: It does:

o Accepting job submissions.

o Negotiating resources(container) for executing the
application specific ApplicationMaster

o Restarting the ApplicationMaster in case of failure

2. NodeManager:

o This is a per-machine slave daemon. NodeManager
responsibility is launching the application containers for
application execution.

o NodeManager monitors the resource usage such as memory,
CPU, disk, network, etc.

o It then reports the wusage of resources to the global
ResourceManager.

3. Per-Application Application Master: Per-application Application
master is an application specific entity. It’s responsibility is to
negotiate required resources for execution from the ResourceManager.

It works along with the NodeManager for executing and monitoring
component tasks.

) Node
_~' Manager

27 < App

s container Master

“A Resource <

== Manager
oo s o)

-

dient

X y
\S—

Map Reduce Status ——>

Job Submission L
Node Status -—)
Resource Request >

Fig. YARN Architecture

The steps involved in YARN architecture are:

1.
2.

3.
4.

The client program submits an application.

The Resource Manager launches the Application Master by assigning
some container.

The Application Master registers with the Resource manager.

On successful container allocations, the application master launches
the container by providing the container launch specification to the
NodeManager.

. The NodeManager executes the application code.
. During the application execution, the client that submitted the job

directly communicates with the Application Master to get status,
progress updates.

. Once the application has been processed completely, the application

master deregisters with the ResourceManager and shuts down
allowing its own container to be repurposed.

Q) Explain Hadoop Ecosystem in detail.

The following are the components of Hadoop ecosystem:

1.

2.

3.

HDFS: Hadoop Distributed File System. It simply stores data files as
close to the original form as possible.

HBase: [t is Hadoop’s distributed column based database. It supports
structured data storage for large tables.

Hive: It is a Hadoop’s data warehouse, enables analysis of large data
sets using a language very similar to SQL. So, one can access data
stored in hadoop cluster by using Hive.

. Pig: Pig is an easy to understand data flow language. It helps with the

analysis of large data sets which is quite the order with Hadoop
without writing codes in MapReduce paradigm.

Apache Hadoop Ecosystem

Management & Monitoring
(Ambari)

Scripting Machine Learning
(Pig) (Mahout)

Distributed Processing

(MapReduce)

()
v

BA
o @
T ©
o ©
- o0
o i =
mv
o

=

Coordination
(ZooKeeper)
Data Integration
(Sqoop/REST/ODBC)

Distributed Storage
(HDFS)

Workflow & Scheduling
(Oozie)

5. ZooKeeper: It is an open source application that configures
synchronizes the distributed systems.
6. Oozie: It is a workflow scheduler system to manage apache hadoop

jobs.
7. Mahout: It is a scalable Machine Learning and data mining library.
8. Chukwa: It is a data collection system for managing large distributed

systems.

9. Sqoop: it is used to transfer bulk data between Hadoop and
structured data stores such as relational databases.

10. Ambari: it is a web based tool for provisioning, Managing
and Monitoring Apache Hadoop clusters.

Q) Describe differences between SQL and MapReduce

Characteristic SQL MapReduce(Hadoop1X)

Access Interactive and | Batch
Batch

Structure Static Dynamic

Updates Read and Write | Write once, Read many
many times times

Integrity High Low

Scalability Nonlinear Linear

Q) What is MapReduce. Explain indetail different phases in
MapReduce. (or) Explain MapReduce anatomy.

MapReduce is a programming model for data processing. Hadoop can run
MapReduce programs written in Java, Ruby and Python.

MapReduce programs are inherently parallel, thus very large scale data
analysis can be done fastly.

In MapReduce programming, Jobs(applications) are split into a set of map
tasks and reduce tasks.
Map task takes care of loading, parsing, transforming and filtering.
The responsibility of reduce task is grouping and aggregating data that is
produced by map tasks to generate final output.
Each map task is broken down into the following phases:

1. Record Reader 2. Mapper

3. Combiner 4.Partitioner.
The output produced by the map task is known as intermediate <keys,
value> pairs. These intermediate <keys, value> pairs are sent to reducer.
The reduce tasks are broken down into the following phases:

1. Shulffle 2. Sort

3. Reducer 4. Output format.
Hadoop assigns map tasks to the DataNode where the actual data to be
processed resides. This way, Hadoop ensures data locality. Data locality
means that data is not moved over network; only computational code moved
to process data which saves network bandwidth.

Mapper Phases:

Mapper maps the input <keys, value> pairs into a set of intermediate <keys,
value> pairs.

Each map task is broken into following phases:

1. RecordReader: converts byte oriented view of input in to Record
oriented view and presents it to the Mapper tasks. It presents the
tasks with keys and values.

i) InputFormat: It reads the given input file and splits using the
method getsplits().
ii) Then it defines RecordReader using createRecordReader|()

which is responsible for generating <keys, value> pairs.

2. Mapper: Map function works on the <keys, value> pairs produced by

RecordReader and generates intermediate (key, value) pairs.
Methods:

- protected void cleanup(Context context): called once at tend of
task.

- protected void map(KEYIN key, VALUEIN value, Context
context): called once for each key-value pair in input split.

- void run(Context context): user can override this method for
complete control over execution of Mapper.

- protected void setup(Context context): called once at
beginning of task to perform required activities to initiate map()
method.

3. Combiner: It takes intermediate <keys, value> pairs provided by
mapper and applies user specific aggregate function to only one
mapper. It is also known as local Reducer.

We can optionally specify a combiner using
Job.setCombinerClass(ReducerClass) to perform local aggregation on

intermediate outputs.
Hello is hello is
Sunny is Sunny is Sunny

_____________ Mapper Output

o
-~
o

Mapper 1 Total 9 Keys Mapper 2

(Hello,1)
(is,1)

(Hello ,1)
(is,1)

(Sunny,1)
(is,1)
(Sunny,1)
(is,1)

Intermediate data (Sunny 1)

.,
.
R
"

Shuffling & Sorting
(Hello, 1,1)

(Hello, 2) (is, 1,1,1,1)
Total’3 keys (is, 4) {Sunny, 1,1,1)

(Sunny, 3)

Reducer

Reducer Output

Fig. MapReduce without Combiner class

.......

Total 3 keys

Fig. MapReduce with Combiner class

4. Partitioner: Take intermediate <keys, value> pairs produced by the
mapper, splits them into partitions the data using a user-defined
condition.

The default behavior is to hash the key to determine the reducer.User
can control by using the method:

int getPartition(KEY key, VALUE value, int numPartitions)

Reducer Phases:
1. Shuffle & Sort:
e Downloads the grouped key-value pairs onto the local machine,
where the Reducer is running.
e The individual <keys, value> pairs are sorted by key into a
larger data list.
e The data list groups the equivalent keys together so that their
values can be iterated easily in the Reducer task.
2. Reducer:
e The Reducer takes the grouped key-value paired data as input
and runs a Reducer function on each one of them.
e Here, the data can be aggregated, filtered, and combined in a
number of ways, and it requires a wide range of processing.
e Once the execution is over, it gives zero or more key-value pairs
to the final step.
Methods:
- protected void cleanup(Context context): called once at tend of task.
- protected void reduce(KEYIN key, VALUEIN value, Context
context): called once for each key-value pair.
- void run(Context context): user can override this method for
complete control over execution of Reducer.
- protected void setup(Context context): called once at
beginning of task to perform required activities to initiate reduce|)
method.

3. Output format:
e In the output phase, we have an output formatter that
translates the final key-value pairs from the Reducer function
and writes them onto a file using a record writer.

T T
"i?'

& e ducer.
Figure 8.1 The chores of Mapper, Combiner, Partitionef. and Re

Compression: In MapReduce programming we can compress the output
file. Compression provides two benefits as follows:

¢ Reduces the space to store files.

e Speeds up data transfer across the network.
We can specify compression format in the Driver program as below:

conf.setBoolean(“mapred.output.compress”, true);
conf.setClass(“mapred.output.compression.codec”,GzipCodec.class,Compres
sionCodec.class);

Here, codec is the implementation of a compression and decompression
algorithm, GzipCodec is the compression algorithm for gzip.

Q) Write a MapReuduce program for WordCount problem.

import java.io.lOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount

{
public static class WCMapper extends Mapper <Object, Text, Text,
IntWritable>

{

final static IntWritable one = new IntWritable(1);

Text word = new Text();

public void map(Object key, Text value, Context context) throws
IOException, InterruptedException {

StringTokenizer itr = new tringTokenizer(value.toString));
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

public static class WCReducer extends Reducer<Text, IntWritable, Text,

IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key,

Context context) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);
context.write(key, result);

}

public static void main(String|] args) throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count")
job.setdarByClass(WordCount.class);
job.setMapperClass(WCMapper.class);
job.setReducerClass(WCReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

K

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? O :
Map Key Value
Each line passed to Splining
inividual mapper
Input Files instances
Applel
Apple Orange Mango l_. Orange,1
Mango,1
Appie Orange Mango
Orange Grapes Plum Orange.1
Orange Grapes Plum '—- Grapes,1
Plum,1
Applel

Apple Plum Mango }—’ Plum,1

Mango,1

Appie Plum Mango
Apple Apple Plum

1);

Appie,l
Appie Apple Plum]—c Appiel

Plum,1

N

~

N

Iterable<IntWritable> values,
Sort and
Shuffle
Reduce Key
Value Palis
Applel
Appiel Appled
Applel
Applel
Final Output

Grapes, 1 Grapes,1

\ Appled

\A Grapes,1

Mango,1 R Mango,2
Mango,1 Mango,2 ’/—_’/’- Orange,2

/ Flum,3
Orangel | Orsngs 2 ,/
Orange,1
Flum,1 .
Plun,l Y Ple,3
Plum,1

Fig. MapReduce paradigm for WordCount

Q) Write a MapReduce program to calculate employee salary of each
department in the university.

I/P:

001,it,10000

002,cse, 20000

003,it,30000

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class Salary
{

public static class SalaryMapper extends Mapper <LongWritable,
Text, Text,
IntWritable>

{

public void map(LongWritable key, Text value, Context context) throws
IOException,
Interrupted Exception

{

nmn

String[] token = value.toString().split(",");
int s = Integer.parselnt(token|[2]);
IntWritable sal = new IntWritable();
sal.set(s);

context.write(new Text(token[1]),sal);

}

public static class SalaryReducer extends Reducer<Text, IntWritable, Text,
IntWritable>

{

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context
context) throws

IOException, InterruptedException

{

int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key,result);

b
j

public static void main(String|[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Salary");

job.setJarByClass(Salary.class);
job.setMapperClass(SalaryMapper.class);

job.setReducerClass(SalaryReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FilelInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? O : 1);

h

}

Q) Write a user define partitioner class for WordCount problem.

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Partitioner;

public class WordCountPartitioner extends Partitioner<Text,IntWritable{
public int getPartition(Text key, IntWritable value, int numPartitions){

String word = key.toString();
char alphabet = word.toUpperCase().charAt(0);

int partitionNumber = O;

switch(alphabet){
case 'A": partitionNumber = 1;break;
case 'B': partitionNumber = 1;break;
case 'C': partitionNumber = 1;break;
case 'D": partitionNumber = 1;break;
case 'E': partitionNumber = 1;break;
case 'F': partitionNumber = 1;break;
case 'G": partitionNumber = 1;break;
case 'H': partitionNumber = 1;break;
case 'I': partitionNumber = 1;break;
case 'J": partitionNumber = 1;break;
case 'K': partitionNumber = 1;break;
case 'L": partitionNumber = 1;break;
case 'M': partitionNumber = 1;break;
case 'N': partitionNumber = 1;break;
case 'O": partitionNumber = 1;break;
case 'P': partitionNumber = 1;break;
case 'Q": partitionNumber = 1;break;
case 'R': partitionNumber = 1;break;
case 'S'": partitionNumber = 1;break;
case 'T": partitionNumber = 1;break;
case 'U": partitionNumber = 1;break;
case 'V'": partitionNumber = 1;break;
case 'W': partitionNumber = 1;break;
case 'X': partitionNumber = 1;break;
case 'Y': partitionNumber = 1;break;
case 'Z': partitionNumber = 1;break;

default: partitionNumber = O;break;

}

return partionNumber;

}

}

In the drive program set the partioner class as shown below:
job.setNumReduceTasks(27);
job.setPartitionerClass(WordCountPartitioner.class);

Q) Write a MapReuduce program for sorting following data according to
name.

Input:

001,chp

002,vr

003,pnr

004,prp

import java.io.lIOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class Sort{
public static class SortMapper extends Mapper
<LongWritable, Text, Text, Text> {
protected void map(LongWritable key, Text value, Context
context) throws IOException,InterruptedException{

String[] token = value.toString().split(",");
context.write(new Text(token[1]),new Text(token[O]+"-"+token[1]));

j
}

public static class SortReducer extends
Reducer<Text, Text,NullWritable, Text>{
public void reduce(Text key, Iterable<Text> values, Context
context) throws IOException,InterruptedException{

for(Text details:values){
context.write(NullWritable.get(),details);

}

public static void main(String argsl]) throws
IOException,InterruptedException,ClassNotFoundException{

Configuration conf = new Configuration();

Job job = new Job(conf);

job.setdarByClass(Sort.class);
job.setMapperClass(SortMapper.class);
job.setReducerClass(SortReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);

Q) Write a MapReduce program to arrange the data on user-id, then
within the user id sort them in increasing order of the page count.
Input:

001,3,www.turorialspoint.com

001,4,www.javapoint.com

002,5,www.javapoint.com

003,2,www.analyticsvidhya.com

import java.io.lIOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Sort{

public static class SortMapper extends
Mapper<LongWritable, Text, Text, Text>{

Text comp_key = new Text();

protected void map(LongWritable key, Text wvalue, Context

context) throws IOException,InterruptedException{

String|] token = value.toString().split(",");
comp_key.set(token[0]);
comp_key.set(token[1]);
context.write(comp_key,new Text(token[0]+"-"+token[1]+"-"+token|[2]));
}
}

public static class SortReducer extends
Reducer<Text, Text,NullWritable, Text>{
public void reduce(Text key, Iterable<Text> values, Context
context) throws IOException,InterruptedException{

for(Text details:values){
context.write(NullWritable.get(),details);

h
}

public static void main(String argsl]) throws
IOException,InterruptedException,ClassNotFoundException{

Configuration conf = new Configuration();

Job job = new Job(conf);

job.setdarByClass(Sort.class);

job.setMapperClass(SortMapper.class);
job.setReducerClass(SortReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);

003-2-www.analyticsvidhya.com

B01-3-www.turorialspoint.com
B01-4-www.javapoint.com
B02-5-www. javapoint.com

Q) Write a MapReduce program to search an employee name in the
following data:
Input:
001,chp
002,vr
003,pnr
004,prp
import java.io.lOException;
import org.apache.hadoop.conf.Configuration,;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class Search{
public static class SearchMapper extends Mapper<LongWritable,
Text, Text, Text>{
static String keyword;
static int pos=0;
protected void setup(Context context) throws IOException,
Interrupted Exception {
Configuration config = context.getConfiguration();
keyword = config.get("keyword");
}

protected void map(LongWritable key, Text value, Context context) throws
IOException,InterruptedException{
InputSplit in = context.getInputSplit();
FileSplit f = (FileSplit)in;
String fileName = f.getPath().getName();
Integer wordPos;
pos++;
if(value.toString().contains(keyword)){
wordPos = value.find(keyword);
context.write(value, new Text(fileName + ""+tnew
IntWritable(pos).toString()+","+wordPos.toString()));

h
h
j

public static class SearchReducer extends Reducer
<Text,Text, Text, Text>{
public void reduce(Text key, Text value, Context context) throws
IOException,InterruptedException{
context.write(key,value);

j
j

public static void main(String args|]) throws
IOException,InterruptedException,ClassNotFoundException{
Configuration conf = new Configuration();
Job job = new Job(conf);
job.setJarByClass(Search.class);
job.setMapperClass(SearchMapper.class);
job.setReducerClass(SearchReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setlnputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setNumReduceTasks(1);
job.getConfiguration().set("keyword","chp");
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);

}
}

Q) What are the Real time applications wusing MapReduce
Programming?

® Social networks ¢ Banking

¢ Media and Entertainment e Stock Market

e Health Care ¢ Weather Forecasting

e Business

