Insertion Sort

- Insertion sort is a simple and efficient comparison sort.
- In this algorithm, each iteration removes an element from the input data and inserts it into the correct position in the list being sorted.
- The choice of the element being removed from the input is random and this process is repeated until all input elements have gone through.

Advantages

- Simple implementation
- Efficient for small data
- Adaptive: If the input list is presorted [may not be completely] then insertions sort takes $\mathrm{O}(n+$ d), where d is the number of inversions
- Practically more efficient than selection and bubble sorts, even though all of them have $\mathrm{O}\left(n^{2}\right)$ worst case complexity
- Stable: Maintains relative order of input data if the keys(temp variable) are same
- In-place: It requires only a constant amount $O(1)$ of additional memory space
- Online: Insertion sort can sort the list as it receives it

Algorithm

- Step 1 - If it is the first element, it is already sorted. return 1;
- Step 2 - Pick next element
- Step 3 - Compare with all elements in the sorted sub-list
- Step 4 - Shift all the elements in the sorted sublist that is greater than the
- value to be sorted
- Step 5 - Insert the value
- Step 6 - Repeat until list is sorted
- Algorithm
- Every repetition of insertion sort removes an element from the input data, and inserts it into the correct position in the already-sorted list until no input elements remain.
- Sorting is typically done in-place.
- The resulting array after k iterations has the property where the first $k+1$ entries are sorted.
- Each element greater than x is copied to the right as it is compared against x.

Sorted partial result

Unsorted elements

Sorted partial result
Unsorted elements
becomes

Implementation

$$
\begin{aligned}
& \text { void InsertionSort(int } A[] \text {, int } n) \text { ई } \\
& \qquad \begin{array}{l}
\text { int } i, j, v ; \\
\text { for }(i=1 ; i<=n-1 ; i++)\{ \\
v=A[i] ; \\
j=i ; \\
\text { while }(A[j-1]>v 8 \& s>=1)\{ \\
\\
A[j]=A[j-1] ; \\
\quad j--; \\
\} \\
\text { A[j] }=v ;
\end{array}
\end{aligned}
$$

- Example

- Given an array: 68145372 and the goal is to put them in ascending order.

68145372 (Consider index 0)
68145372 (Consider indices 0-1)
16845372 (Consider indices 0-2: insertion places 1 in front of 6 and 8)
14685372 (Process same as above is repeated until array is sorted)
14568372
13456782
12345678 (The array is sorted!)

- Analysis
- Worst case analysis
- Worst case occurs when for every i the inner loop has to move all elements $A[1], \ldots, A[i-$ 1] (which happens when $A[i]=$ key is smaller than all of them), that takes $\Theta(i-1)$ time.

$$
\begin{aligned}
T^{\prime}(n) & =\theta(1)+\theta(2)+\theta(2)+\ldots+\theta(n-1) \\
& =\theta(1+2+3+\ldots .+n-1)=\theta\left(\frac{n(n-1)}{2}\right) \sim \theta\left(n^{2}\right)
\end{aligned}
$$

- Average case analysis
- For the average case, the inner loop will insert $A[i]$ in the middle of $A[1], \ldots, A[i-1]$. This takes $\Theta(i / 2)$ time.

$$
T(n)=\sum_{i=1}^{n} \Theta(i / 2) \approx \Theta\left(n^{2}\right)
$$

- Performance
- If every element is greater than or equal to every element to its left, the running time of insertion sort is $\boldsymbol{\Theta}(n)$.
- This situation occurs if the array starts out already sorted, and so an already-sorted array is the best case for insertion sort.

Worst case complexity: $\Theta\left(n^{2}\right)$
Best case complexity: $\Theta(n)$
Average case complexity: $\Theta\left(n^{2}\right)$

- Comparisons to Other Sorting Algorithms
- Insertion sort is one of the elementary sorting algorithms with $\mathrm{O}\left(n^{2}\right)$ worst-case time.
- Insertion sort is used when the data is nearly sorted (due to its adaptiveness) or when the input size is small (due to its low overhead).
- For these reasons and due to its stability, insertion sort is used as the recursive base case (when the problem size is small) for higher overhead divide-and-conquer sorting algorithms, such as merge sort or quick sort.

Linear Search

- Let us assume we are given an array where the order of the elements is not known.
- Means the elements of the array are not sorted.
- Here we have to scan the complete array and see if the element is there in the given list or not

Algorithm

Int unORderedLinearSearch(int A[], int data)

$$
\begin{aligned}
& \text { For(int } \mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)\{ \\
& \text { If(A } \mathrm{i}]==\text { data) } \\
& \quad \text { return } \mathrm{i} ; \\
& \} \\
& \text { return }-1 \text {; }
\end{aligned}
$$

\}

Complexity

- Time Complexity: O(n)
- In the worst case we need to scan the complete array.
- Space Complexity: O(1)

Algorithm

Int orderedLinearSearch(int A[], int n, int data)\{ for(int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)\{$
if(A[i]==data)
return i;
else if(A[i] > data)
return -1;
\}
return -1;

Example

Linear Search

Find '20'

Complexity

- Time Complexity: $O(n)$, in worst we scan the complete array.
- Space Complexity: O(1).

Merge Sort

- Merge sort is an example of the divide and conquer strategy.
- Merging is the process of combining two sorted files to make one bigger sorted file.
- Selection is the process of dividing a file into two parts: k smallest elements and n $-k$ largest elements.
- Selection and merging are opposite operations
- selection splits a list into two lists
- merging joins two files to make one file
- Merge sort is Quick sort's complement
- Merge sort accesses the data in a sequential manner
- This algorithm is used for sorting a linked list
- Merge sort is insensitive to the initial order of its input
- In Quick sort most of the work is done before the recursive calls.
- Quick sort starts with the largest sub file and finishes with the small ones and as a result it needs stack.
- This algorithm is not stable.
- Merge sort divides the list into two parts; then each part is conquered individually.
- Merge sort starts with the small subfiles and finishes with the largest one.
- As a result it doesn't need stack.
- This algorithm is stable.

Algorithm

1. Divide the unsorted list into sub lists, each containing element.
2. Take adjacent pairs of two singleton lists and merge them to form a list of 2 elements. N . will now convert into lists of size 2.
3. Repeat the process till a single sorted list of obtained.

Algorithm

- The merge function works as follows:
- Create copies of the subarrays $L \leftarrow A[p . . q]$ and $M \leftarrow$ A[q+1..r].
- Create three pointers i, j and k
- i maintains current index of L, starting at 1
- j maintains current index of M, starting at 1
- k maintains the current index of $A[p . . q]$, starting at p.
- Until we reach the end of either L or M, pick the larger among the elements from L and M and place them in the correct position at A[p..q]
- When we run out of elements in either L or M, pick up the remaining elements and put in $\mathrm{A}[\mathrm{p} . . \mathrm{q}]$

Example

Merge Sort

Implementation

intrind: iliflyth betif\}
 mid l lighit tetel/2;
 Nergesorth, temp, ett, mid);
 Mergsoot|A, temp, midt, ngidt;
 Merged, ,emp, etet, midel, rigitlt;

```
void Merge[int A|, int temp||, int left, int mid, int right) \}
    int i, left_ end, size, temp_pos;
    left end \(=\) mid -1 ;
    temp_pos = left;
    size \(=\) right - left +1 ;
    while (|left \(<=\) left_end) \(\& \& \dot{\text { \& }}\) (mid \(<=\) right) \(\}\)
    iffA||eft| < = A|mid|||
        temp|temp_poss = Alleft];
        temp_pos \(=\) temp_pos +1 ;
        left = left +1 ;
    \}
    else \(\{\)
        temp \(\mid\) temp_pos \(=\) = \(\mid\) mid \(] ;\)
        temp_pos = temp_pos +1 ;
        mid \(=\) mid +1 ;
    )
```

```
while |left <= left_end){
    temp|temp_pos| = Aleft;
    left = left +1;
    temp_pos = temp_pos + 1;
}
while {mid <= right)}
    temp|temp_pos) = A mid|);
    mid = mid +1;
    temp_pos= temp_pos + 1;
for (i= 0; i<= size; ; + ) {
    A[{\mp@code{ght] = temp|[ight];}
    right= right - l;
|
```

।

Time Complexity

- Merge Sort is a stable sort which means that the same element in an array maintain their original positions with respect to each other.
- Overall time complexity of Merge sort is O(nLogn).
- It is more efficient as it is in worst case also the runtime is O (nlogn) The space complexity of Merge sort is $\mathrm{O}(\mathrm{n})$.

Analysis

- In Merge sort the input list is divided into two parts and these are solved recursively.
- After solving the sub problems, they are merged by scanning the resultant sub problems.
- Let us assume $T(n)$ is the complexity of Merge sort with n elements.
- The recurrence for the Merge Sort can be defined as:

Performance

Worst case complexity : O(nlogn)
Best case complexity: $\theta(n \operatorname{logn})$
Average case complexity: $\theta(n l o g n)$
Worst case space complexity: $\theta(n)$ auxiliary

Quicksort

- Quick sort is an example of a divide-andconquer algorithmic technique. It is also called partition exchange sort.
- It uses recursive calls for sorting the elements, and it is one of the famous algorithms among comparison-based sorting algorithms.
- Divide: The array $A[$ low ...high] is partitioned into two non-empty sub arrays $A[l o w ~ . . . q]$ and $A[q+1 . .$. high], such that each element of $A[$ low ... high] is less than or equal to each element of $A[q+1 \ldots$ high].
- The index q is computed as part of this partitioning procedure.
- Conquer: The two sub arrays $A[l o w ~ . . . q]$ and $A[q+1 \ldots h i g h]$ are sorted by recursive calls to Quick sort.

Algorithm

- The recursive algorithm consists of four steps:
- 1) If there are one or no elements in the array to be sorted, return.
- 2) Pick an element in the array to serve as the "pivot" point. (Usually the leftmost element in the array is used.)

Algorithm

-3) Split the array into two parts - one with elements larger than the pivot and the other with elements smaller than the pivot.
-4) Recursively repeat the algorithm for both halves of the original array.

Implementation

void Quicksort(int A|], int low, int high) \{

 int pivot; /* Termination condition! */ iff high > low) \{ pivot = Partition(A, low, high); Quicksort(A, low, pivot-1); Quicksort(A, pivot+1, high);```
int Partition(int A, int low, int high) {
 int left, right, pivot_item = A[low];
 left = low;
 right = high;
 while (left < right) {
 /* Move left while item < pivot */
 while(A[left] <= pivot_item)
 left++;
 /* Move right while item > pivot */
 while(A[right] > pivot_item)
 right--;
 if(left < right)
 swap(A,left,right);
 }
/* right is final position for the pivot */
A[low] = A[right];
A[right] = pivot_item;
return right;

\section*{Analysis}
- Let us assume that \(T(\mathrm{n})\) be the complexity of Quick sort and also assume that all elements are distinct.
- Recurrence for \(T(n)\) depends on two sub problem sizes which depend on partition element.
- If pivot is \(i^{\text {th }}\) smallest element then exactly (\(i-1\)) items will be in left part and (\(n-i\)) in right part.
- Let us call it as \(i\)-split.
- Since each element has equal probability of selecting it as pivot the probability of selecting ith element is \(1 / n\)
- Best Case: Each partition splits array in halves and gives
- \(T(n)=2 T(n / 2)+\Theta(n)=\Theta(\) nlogn \()\), [using Divide and Conquer master theorem]
- Worst Case: Each partition gives unbalanced splits and we get
- \(T(n)=T(n-1)+\Theta(n)=\Theta(n 2)[u s i n g\)

Subtraction and Conquer master theorem]
- The worst-case occurs when the list is already sorted and last element chosen as pivot.
- Average Case: In the average case of Quick sort, we do not know where the split happens.
- For this reason, we take all possible values of split locations, add all their complexities and divide with \(n\) to get the average case complexity.

\section*{Nested Dependent Loops}
\[
\begin{aligned}
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } j=i \text { to } n \text { do } \\
& \text { sum }=\text { sum }+1 \\
& \sum_{i=1}^{n} \sum_{j=i}^{n} 1=\sum_{i=}^{n}(n-i+1)=\sum_{i=1}^{n}(n+1)-\sum_{i=1}^{n} i= \\
& \quad n(n+1)-\frac{n(n+1)}{2}=\frac{n(n+1)}{2} \approx n^{2}
\end{aligned}
\]

\section*{Recursion}
- A recursive procedure can often be analyzed by solving a recursive equation
- Basic form:
\[
\begin{array}{r}
\mathrm{T}(\mathrm{n})=\text { if (base case) then some constant } \\
\text { else (time to solve subproblems + } \\
\text { time to combine solutions) }
\end{array}
\]
- Result depends upon
- how many subproblems
- how much smaller are subproblems
- how costly to combine solutions (coefficients)

\section*{Example: Sum of Integer Queue}
sum_queue (Q) \{
if (Q.length \(==0\)) return 0 ;
else return \(Q\).dequeue() + sum_queue (Q) ; \}
- One subproblem
- Linear reduction in size (decrease by 1)
- Combining: constant c (+), \(1 \times\) subproblem

Equation: \(\quad \mathrm{T}(0) \leq \mathrm{b}\)
\[
T(n) \leq c+T(n-1) \quad \text { for } n>0
\]

\section*{Sum, Continued}

Equation: \(\quad T(0) \leq b\)
\[
T(n) \leq c+T(n-1) \quad \text { for } n>0
\]

Solution:
\[
\begin{aligned}
\mathrm{T}(\mathrm{n}) & \leq \mathrm{c}+\mathrm{c}+\mathrm{T}(\mathrm{n}-2) \\
& \leq \mathrm{c}+\mathrm{c}+\mathrm{c}+\mathrm{T}(\mathrm{n}-3) \\
& \leq \mathrm{kc}+\mathrm{T}(\mathrm{n}-\mathrm{k}) \text { for all } \mathrm{k} \\
& \leq \mathrm{nc}+\mathrm{T}(0) \text { for } \mathrm{k}=\mathrm{n} \\
& \leq \mathrm{cn}+b=O(\mathrm{n})
\end{aligned}
\]

\section*{Example: Recursive Fibonacci}
- Recursive Fibonacci:

\section*{int Fib(n) \{}
```

if (n == 0 or n == 1) return 1 ;
else return Fib(n - 1) + Fib(n - 2); }

```
- Running time: Lower bound analysis
\[
\begin{aligned}
& \mathrm{T}(0), \mathrm{T}(1) \geq 1 \\
& \mathrm{~T}(n) \geq \mathrm{T}(n-1)+\mathrm{T}(n-2)+\mathrm{c} \quad \text { if } n>1
\end{aligned}
\]
- Note: \(T(n) \geq\) Fib(n)
- Fact: \(\operatorname{Fib}(\mathrm{n}) \geq(3 / 2)^{\mathrm{n}}\)
\[
\mathrm{O}\left((3 / 2)^{\mathrm{n}}\right) \quad \text { Why? }
\]

\section*{Direct Proof of Recursive Fibonacci}
- Recursive Fibonacci:
int Fib(n)
\[
\begin{aligned}
& \text { if }(n=0 \text { or } n==1) \text { return } 1 \\
& \text { else return Fib }(n-1)+F i b(n-2)
\end{aligned}
\]
- Lower bound analysis
- \(T(0), T(1)>=b\)
\(T(n)>=T(n-1)+T(n-2)+c\) if \(n>1\)
- Analysis
let \(\phi\) be \((1+\sqrt{ } 5) / 2\) which satisfies \(\phi^{2}=\phi+1\)
show by induction on \(n\) that \(T(n)>=b \phi^{n-1}\)

\section*{Direct Proof Continued}
- Basis: \(\mathrm{T}(0) \geq \mathrm{b}>\mathrm{b} \phi^{-1}\) and \(\mathrm{T}(1) \geq \mathrm{b}=\) \(\mathrm{b} \phi^{0}\)
- Inductive step: Assume \(\mathbf{T}(\mathrm{m}) \geq \mathrm{b} \phi^{m-1}\) for all \(m<n\)
\[
\begin{aligned}
\mathrm{T}(n) & \geq \mathrm{T}(n-1)+\mathrm{T}(n-2)+\mathrm{c} \\
& \geq \mathrm{b} \phi^{n-2}+\mathrm{b} \phi^{n-3}+\mathrm{c} \\
& \geq \mathrm{b} \phi^{n-3}(\phi+1)+\mathrm{c} \\
& =\mathrm{b} \phi^{n-3} \phi^{2}+\mathrm{c} \\
& \geq \mathrm{b} \phi^{n-1}
\end{aligned}
\]

\section*{Fibonacci Call Tree}

\section*{Recursive Definitions: Power}
- \(\mathrm{X}^{0}=1\)
- \(\mathrm{X}^{\mathrm{n}}=\mathrm{x} \times \mathrm{X}^{\mathrm{n}-1}\)
public static double power
(double \(x\), int \(n\)) \{
if (\(\mathrm{n}<=0\)) // or: throw exc. if \(<0\) return 1;
else
return \(x\) * power (x, \(n-1\)) ;
\}

\section*{Recursive Definitions: Factorial Code} public static int factorial (int \(n\)) \{ if (\(n=0\)) // or: throw exc. if \(<0\) return 1;
else
return \(n\) * factorial (n-1) ;
\}

\section*{Another example}
- The factorial function: multiply together all numbers from 1 to \(n\).
- denoted n !
\[
\begin{aligned}
& \mathrm{n}!=\mathrm{n}^{*}(\mathrm{n}-1)^{*}(\mathrm{n}-2)^{*} \ldots 2 * 1 \\
& \mathrm{n}!=\left\{\begin{array}{lll}
\mathrm{n} *(\mathrm{n}-1)! & \text { if } \mathrm{n}>0 & \\
1 & \text { if } \mathrm{n}==0 & \begin{array}{l}
\text { solution to a simpler sub- } \\
\text { problem }
\end{array} \\
& & \leftarrow \text { Base case: } \text { Solution is } \\
\text { given directly }
\end{array}\right.
\end{aligned}
\]

\section*{4! Walk-through}
\[
4!=
\]
```

n
1
if n==0

```

\section*{Java implementation of \(n\) !}
public int factorial(int \(n\)) \(\{\)
if (\(\mathrm{n}==0\))
return 1;
else
return n*factorial(n-1);
\}
\[
n^{\prime} \begin{cases}n^{*}(n-1)! & \text { if } n>0 \\ 1 & \text { if } n==0\end{cases}
\]

\section*{factorial(4);}
factorial(4)
public int factorial(int n) \(\{\)

return 1;
else
return
n *factorial(n-
1);
\}

\section*{factorial(4);}
public int factorial(int
n) \(\{\)
if \((\mathrm{n}==0) \quad\) return 1 ; else

\section*{\(\mathrm{n}=4\) ctorial \((4)\) \\ Returns 4*factorial(3)}
return
n *factorial(n-
1);
\}

\section*{factorial(4);}
public int factorial(int
n) \(\{\)
if \((\mathrm{n}==0) \quad\) return 1 ;
else

\section*{factorial(4);}
public int factorial(int
n) \(\{\)
if \((\mathrm{n}==0)\)
\(\quad\) return 1; else

\section*{factorial(4);}
public int factorial(int
n) \(\{\)
if \((\mathrm{n}==0)\)
\(\quad\) return 1;
else

\section*{factorial(4);}
public int factorial(int n) \(\{\)
```

if (n==0) return 1;

``` else


\section*{factorial(4);}
public int factorial(int
n) \(\{\)
if \((\mathrm{n}==0)\)
\(\quad\) return 1;
else

\section*{factorial(4);}
public int factorial(int
n) \(\{\)
if \((\mathrm{n}==0)\)
\(\quad\) return 1; else

\section*{factorial(4);}
public int factorial(int
n) \(\{\)
if \((\mathrm{n}==0) \quad\) return 1 ;
else

\section*{factorial(4);}
public int factorial(int
n) \(\{\)
if \(\quad\)\begin{tabular}{l}
\(\mathrm{n}==0)\) \\
\(\quad\) return \(1 ;\)
\end{tabular} else

\section*{\(\mathrm{n}=4\) forial(4) \\ Returns 4*factorial(3)}
return
n *factorial(n-
1);
\}

\section*{factorial(4);}
factorial(4)

\section*{Recursive Definitions: Greatest Common Divisor}

Definition of \(\operatorname{gcd}(m, n)\), for integers \(m>n>0\) :
- \(\operatorname{gcd}(m, n)=n\), if \(n\) divides \(m\) evenly
- \(\operatorname{gcd}(\mathrm{m}, \mathrm{n})=\operatorname{gcd}(\mathrm{n}, \mathrm{m} \% \mathrm{n})\), otherwise
public static int gcd (int \(m\), int \(n\)) \{ if (\(\mathrm{m}<\mathrm{n}\)) return \(\operatorname{gcd}(\mathrm{n}, \mathrm{m})\);
else if (\(m\) \% \(n=0\)) // could check \(n>0\) return \(n\);
else
return \(\operatorname{gcd}(n, m \% n)\);
\}

\section*{Example: Binary Search}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 7 & 12 & 30 & 35 & 75 & 83 & 87 & 90 & 97 & 99 \\
\hline
\end{tabular}

One subproblem, half as large
Equation:
\[
\begin{aligned}
& \mathrm{T}(1) \leq \mathrm{b} \\
& \mathrm{~T}(n) \leq \mathrm{T}(n / 2)+\mathrm{c} \quad \text { for } \mathrm{n}>1
\end{aligned}
\]

Solution:
\[
\begin{aligned}
& \mathrm{T}(\mathrm{n}) \leq \mathrm{T}(\mathrm{n} / 2)+\mathrm{c} \\
& \leq \mathrm{T}(\mathrm{n} / 4)+\mathrm{c}+\mathrm{c} \\
& \leq \mathrm{T}(\mathrm{n} / 8)+\mathrm{c}+\mathrm{c}+\mathrm{c} \\
& \leq \mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\mathrm{kc} \\
& \leq \mathrm{T}(1)+\mathrm{c} \log \mathrm{n} \quad \text { where } \mathrm{k}=\log \mathrm{n} \\
& \leq \mathrm{b}+\mathrm{c} \log \mathrm{n} \quad=\quad \mathrm{O}(\log \mathrm{n})
\end{aligned}
\]

\section*{Example: MergeSort}

Split array in half, sort each half, merge together
- 2 subproblems, each half as large
- linear amount of work to combine
\[
\begin{aligned}
& \mathrm{T}(1) \leq \mathrm{b} \\
& \mathrm{~T}(n) \leq 2 \mathrm{~T}(n / 2)+\mathrm{c} n \quad \text { for } \mathrm{n}>1
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{T}(\mathrm{n}) \leq 2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} \leq 2(2(\mathrm{~T}(\mathrm{n} / 4)+\mathrm{cn} / 2)+\mathrm{cn} \\
& =4 \mathrm{~T}(\mathrm{n} / 4)+\mathrm{cn}+\mathrm{cn} \leq 4(2(\mathrm{~T}(\mathrm{n} / 8)+\mathrm{c}(\mathrm{n} / 4))+\mathrm{cn}+\mathrm{cn} \\
& =8 \mathrm{~T}(\mathrm{n} / 8)+\mathrm{cn}+\mathrm{cn}+\mathrm{cn} \leq 2 \mathrm{kT}(\mathrm{n} / 2 \mathrm{k})+\mathrm{kcn} \\
& \leq 2 \mathrm{kT}(1)+\mathrm{cn} \log \mathrm{n} \quad \text { where } \mathrm{k}=\log \mathrm{n} \\
& =\mathrm{O}(\mathrm{n} \log \mathrm{n})
\end{aligned}
\]

\section*{Recursion Versus Iteration}
- Recursion and iteration are similar
- Iteration:
- Loop repetition test determines whether to exit
- Recursion:
- Condition tests for a base case
- Can always write iterative solution to a problem solved recursively, but:
- Recursive code often simpler than iterative
- Thus easier to write, read, and debug

\section*{Searching}

\section*{Definition}
- Searching is the process of finding an item with specified properties from a collection of items.
- The items may be stored as
- Records in a database
- Simple data elements in arrays
- Text in files
- Nodes in trees

Etc

\section*{Purpose of Searching}
- Computers store a lot of information.
- To retrieve proficiently information searching
algorithms are used.

\section*{Types of searching}
- Unordered Linear Serarch
- Sorted/Ordered Linear Search
- Binary Search

\section*{Unordered Linear Search}
- Let us assume we are given an array where the order of the elements is not known.
- Means the elements of the array are not sorted.
- Here we have to scan the complete array and see if the element is there in the given list or not

\section*{Algorithm}

Int unORderedLinearSearch(int A[], int data)
\[
\begin{aligned}
& \text { For(int } \mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)\{ \\
& \text { If(A[i]==data) } \\
& \quad \text { return } \mathrm{i} ; \\
& \} \\
& \text { return }-1 ;
\end{aligned}
\]
\}

\section*{Example}

Input : \(A[]=\{10,20,80,30,60,50\), \(110,100,130,170\}\)
\[
x=110 ;
\]

Output : 6
Element \(x\) is present at index 6

Input : \(\operatorname{arr}[]=\{10,20,80,30,60,50\),
\[
\begin{aligned}
& 110,100,130,170\} \\
& x=175 ;
\end{aligned}
\]

Output:-1
Element x is not present in A[] .

\section*{Complexity}
- Time Complexity: O(n)
- In the worst case we need to scan the complete array.
- Space Complexity: O(1)

\section*{Sorted/Ordered Linear Search}
- If the elements of the array are already sorted, we don't have to scan the complete array to see if the element is there in the given array or not.
- In the algorithm below, if the value at \(A[i]\) is greater than the data to be searched, then we just return -1 without searching the remaining array.

\section*{Algorithm}

Int orderedLinearSearch(int A[], int \(n\), int data) \{ for(int \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)\{\)
if(A[i]==data)
return i;
else if(A[i] > data)
return -1;
\}
return -1;

\section*{Example}

\section*{Linear Search}

Find '20'

\section*{Complexity}
- Time Complexity: \(O(n)\), in worst we scan the complete array.
- Space Complexity: O(1).

\section*{Binary Search}
- Let us consider the problem of searching a word in a dictionary.
- It works on the principle of divide and conquer technique.
- We go to some approximate page(say, middle page) and start searching from that point.
- If the name that we are searching is the same then the search is complete.
- If the page is before the selected pages then apply the same process for the first half; otherwise apply the same to the second half.
- Binary search also works in the same way.
- The algorithm applying such a strategy is referred to as binary search algorithm
\[
\text { Mid }=\text { low }+(\text { high-low }) / 2
\]
or

> Mid= (low+high)/2

\section*{Algorithm Method 1}
- //Iterative Binary Search Algorithm int binarySearchlterative(int \(A[i]\), int \(n\), int data) int low=0;
while (low<=high)\{
mid=low + (high-low)/2; // To avoid overflow
if(A[mid] == data)
return mid;
else if (A[mid] < data) low = mid +1 ;
else high = mid -1 ;
\}
return -1;

\section*{Algorithm Method 2}
- //Recursive Binary Search Algorithm int binarySearchRecursive(int A[], low,int igh, int data) int mid = low+(high-low)/2 // To avoid overflow if((low>high) return -1;
if(A[mid] == data)
return mid;
else if(A[mid] < data)
return BinarySearchRecursive(A, mid+1, high,data);
else return BinarySearchRecursive(A,low, mid-1, data); return -1;

\section*{Example}

\section*{Binary Search}

Search 23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 2 & 5 & 8 & 12 & 16 & 23 & 38 & 56 & 72 & 91 \\
\hline\(L=0\) & 1 & 2 & 3 & \(M=4\) & 5 & 6 & 7 & 8 & \(H=9\) \\
\hline 2 & 5 & 8 & 12 & 16 & 23 & 38 & 56 & 72 & 91 \\
\hline
\end{tabular}
\(23>56\)
take 1 st half
\begin{tabular}{|c|l|l|l|l|l|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 & \(\mathrm{~L}=5\) & 6 & \(\mathrm{M}=7\) & 8 & \(\mathrm{H}=9\) \\
\hline 2 & 5 & 8 & 12 & 16 & 23 & 38 & 56 & 72 & 91 \\
\hline
\end{tabular}

Found 23,
Return 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 & L=5,M=5 & \(\mathrm{H}=6\) & 7 & 8 & 9 \\
\hline 2 & 5 & 8 & 12 & 16 & 23 & 38 & 56 & 72 & 91 \\
\hline
\end{tabular}

\section*{Advantages \& Disadvantages}
- Advantages:
- Binary search is much faster than linear search
- It eliminates half of the list from further searching by using the result of each comparison.
- Time Complexity of Binary Search Algorithm is \(O\left(\log _{2} n\right)\).
- Here, \(n\) is the number of elements in the sorted linear array.
- Linear search takes, on average \(\mathrm{N} / \mathbf{2}\) comparisons (where \(N\) is the number of elements in the array), and worst case \(\mathbf{N}\) comparisons.
- It indicates whether the element being searched is before or after the current position in the list.
- Disadvantages
- It works only on lists that are sorted and kept sorted.
- It works only on element types for which there exists a less-than(<) relationship.
- It employs recursive approach which requires more stack space.

\section*{Selection Sort}
- Selection sort is an in-place sorting algorithm. Selection sort works well for small files.
- It is for sorting the files with very large values used and small keys.
- This is because selection is made based on keys and swaps are made only when required.

\section*{Advantages}
- Easy to implement
- In-place sort (requires additional storage space)

\section*{Disadvantages}

\section*{- Doesn't scale well: \(O\left(n^{2}\right)\)}

\section*{Algorithm}
- 1. Find the minimum value in the list
- 2. Swap it with the value in the current position
- 3. Repeat this process for all the elements until the entire array is sorted
- This algorithm is called selection sort since it repeatedly selects the smallest element.

\section*{Implementation}
```

void Selection(int A ||, int n){
int i, j, min, temp;
for (i=0;i<n-1; i++){
min = i;
for (j=i+l;j<n;j+t){
if(A [j]<A [min }]
min = j;
}
|/ swap elements
temp = A(min);
A [min}]=A[1]
A[i] = temp;
}

```

\section*{Performance}

Worst case complexity: O(\(n^{2}\))
Best case complexity: \(O\left(n^{2}\right)\)
Average case complexity: \(O\left(n^{2}\right)\)
Worst case space complexity: 0(1) auxiliary

\section*{Sorting}

\section*{Definition}
- Sorting is an algorithm that arranges the elements of a list in a certain order [either ascending or descending].
- The output is a permutation or reordering of the input.

\section*{Why is Sorting Necessary?}
- Sorting can significantly reduce the complexity of a problem.
- Used for database algorithms and searches.

\section*{Classifications}
- sorting algorithms are classified into
-Internal Sort -External Sort

\section*{Internal Sort}
- Sort algorithms use main memory exclusively during the sort are called internal sorting algorithms.
- This kind of algorithm assumes high-speed random access to all memory.
- Bubble Sort.
- Insertion Sort.
- Quick Sort.
- Heap Sort.
- Radix Sort.
- Selection sort.

\section*{External Sort}
- Sorting algorithms that use external memory, such as tape or disk, during the sort come under this category.
- Distribution sorting,
- which resembles quicksort,
- external merge sort,
-which resembles merge sort.

\section*{Classification of Sorting Algorithms}
- Sorting algorithms are generally categorized based on the following parameters.
- By Number of Comparisons
- By Number of Swaps
- By Memory Usage
- By Recursion
- By Stability
- By Adaptability

\section*{Bubble Sort}
- Bubble sort is the simplest sorting algorithm.
- It works by iterating the input array from the first element to the last, comparing each pair of elements and swapping them if needed.
- Bubble sort continues its iterations until no more swaps are needed.
- The algorithm gets its name from the way smaller elements "bubble" to the top of the list.
- The only significant advantage is that it can detect whether the input list is already sorted or not.

\section*{Implementation}

\section*{void BubbleSort(int A [], int n)}
\[
\begin{aligned}
& \text { for (int pass }=\mathrm{n}-1 ; \text { pass }>=0 ; \text { pass }--)\{ \\
& \text { for }(\text { int } \mathrm{i}=0 ; \mathrm{i}<=\text { pass }-1 ; i++\mid \\
& \mathrm{if}(\mathrm{~A}[\mathrm{i}]>\mathrm{A}[\mathrm{i}+1])\{ \\
& \text { // swap elements } \\
& \text { int temp }=A[\mathrm{i} ; \\
& \mathrm{A}[\mathrm{i}]=A[\mathrm{i}+1] \\
& \mathrm{A}[\mathrm{i}+1]=\text { temp; }
\end{aligned}
\]
- Algorithm takes \(\mathrm{O}\left(n^{2}\right)\) (even in best case).
- We can improve it by using one extra flag.
- No more swaps indicate the completion of sorting. If the list is already sorted, we can use this flag to skip the remaining passes.
```

void BubbleSortImproved(int A]], int n) {
int pass, i, temp, swapped = 1;
for (pass = n - 1; pass >=0 \&\&\& swapped; pass--) {
swapped = 0;
for (i=0; i <= pass - 1; i++) {
if {A[i]>A[i+1]){
// swap elements
temp = A[i];
A[i] = A [i+1];
A[i+1] = temp;
swapped = 1;

```

\section*{Performance}
- This modified version improves the best case of bubble sort to \(O(n)\).
- Worst case complexity : O(n2)
- Best case complexity (Improved version) : O(n)
- Average case complexity (Basic version) : O(n2)
- Worst case space complexity : O(1) auxiliary```

