Insertion Sort

* I[nsertion sort is a simple and efficient
comparison sort.

* |In this algorithm, each iteration removes an
element from the input data and inserts it into
the correct position in the list being sorted.

* The choice of the element being removed
from the input is random and this process is
repeated until all input elements have gone

through.

Advantages

Simple implementation

Efficient for small data

Adaptive: If the input list is presorted [may not
be completely] then insertions sort takes O(n +
d), where d is the number of inversions

Practically more efficient than selection and bubble sorts,
even though all of them have O(n?) worst case complexity

Stable: Maintains relative order of input data if the
keys(temp variable) are same

In-place: It requires only a constant amount O(1) of

additional memory space
Online: Insertion sort can sort the list as it receives it

Algorithm

Step 1 - If it is the first element, it is already
sorted. return 1;

Step 2 - Pick next element

Step 3 - Compare with all elements in the sorted
sub-list

Step 4 - Shift all the elements in the sorted sub-
list that is greater than the

value to be sorted
Step 5 - Insert the value
Step 6 — Repeat until list is sorted

Algorithm

Every repetition of insertion sort removes an
element from the input data, and inserts it into
the correct position in the already-sorted list
until no input elements remain.

Sorting is typically done in-place.

The resulting array after k iterations has the
property where the first k + 1 entries are sorted.

Each element greater than x is copied to the right
as it is compared against x.

Sorted partial result Unsorted elements

1 T
€ ¥ I BEF 5 ¥
] I
Sorted partial result Unsorted elements
b | '
ecomes < x : X . X
I |

Implementation

 Example

e Givenanarray: 68145372 andthe goal is
to put them in ascending order.

68145372 (Consider index 0)
68145372 (Consider indices 0 - 1)
16845372 (Consider indices 0 - 2: insertion places 1 in front of 6 and 8)

14685372 (Process same as above is repeated until array is sorted)
14568372

13456782
12345678 (The array is sorted!)

* Analysis

* Worst case analysis

* Worst case occurs when for every i the inner
loop has to move all elements A[1], ..., A[i—

1] (which happens when A[i] = key is smaller
than all of them), that takes ©(i — 1) time.

* Average case analysis

* For the average case, the inner loop will insert
Ali] in the middle of A[1], ..., A[i—1]. This
takes O(i/2) time.

i

T(n) = Z 0(i/2) = 0(n%)

(=1

e Performance

* If every element is greater than or equal to
every element to its left, the running time of
insertion sort is O(n).

* This situation occurs if the array starts out
already sorted, and so an already-sorted array
is the best case for insertion sort.

Worst case complexity: ©(n?)

Best case complexity: ©(n)

Average case complexity: ©(n%)

Worst case space complsiy: 0} ot O() aliary

Comparisons to Other Sorting Algorithms

Insertion sort is one of the elementary sorting
algorithms with O(n?) worst-case time.

Insertion sort is used when the data is nearly
sorted (due to its adaptiveness) or when the
input size is small (due to its low overhead).

For these reasons and due to its stability,
insertion sort is used as the recursive base case
(when the problem size is small) for higher
overhead divide-and-conquer sorting
algorithms, such as merge sort or quick sort.

Linear Search

e Let us assume we are given an array where
the order of the elements is not known.

* Means the elements of the array are not
sorted.

* Here we have to scan the complete array and
see if the element is there in the given list or
not

Algorithm
Int unORderedLinearSearch(int A[], int

data)
For(int i=0; i<n;i++){
If(A[i]==data)
return i;

}

return -1;

Complexity

 Time Complexity: O(n)

* In the worst case we need to scan
the complete array.

* Space Complexity: O(1)

Algorithm

Int orderedLinearSearch(int A[], int n, int data){
for(int i=0; i<n ; i++){
if(A[i]==data)

return i;
else if(A[i] > data)
return -1;
}
return -1;

Example

Linear Search
Find '20'

— — —,
L o Fd

LY ra i " a4 -"-._‘I ‘.-"- I
./ \ \ \"-., N \ / \
AN q(1‘{ IIIf | \ I+

Complexity

 Time Complexity:O(n), in worst we scan the
complete array.

e Space Complexity: O(1).

Merge Sort

* Merge sort is an example of the
divide and conquer strategy.

* Merging is the process of
combining two sorted files to
make one bigger sorted file.

» Selection is the process of dividing a file
into two parts: k smallest elements and n
— k largest elements.

* Selection and merging are opposite
operations
—selection splits a list into two lists
—merging joins two files to make one file

* Merge sort is Quick sort’s
complement

* Merge sort accesses the data in a
sequential manner

* This algorithm is used for sorting a
linked list

Merge sort is insensitive to the initial order of
Its input

In Quick sort most of the work is done before
the recursive calls.

Quick sort starts with the largest sub file and
finishes with the small ones and as a result it
needs stack.

This algorithm is not stable.

* Merge sort divides the list into two parts;
then each part is conquered individually.

 Merge sort starts with the small subfiles
and finishes with the largest one.

e As aresultit doesn’t need stack.
* This algorithm is stable.

Algorithm

1. Divide the unsorted list into sub lists, each
containing element.

2. Take adjacent pairs of two singleton lists
and merge them to form a list of 2 elements.
N. will now convert into lists of size 2.

3. Repeat the process till a single sorted list of
obtained.

Algorithm

The merge function works as follows:

Create copies of the subarrays L < A[p..q] and M &
Alg+1..r].

Create three pointersi, j and k

— i maintains current index of L, starting at 1

— j maintains current index of M, starting at 1

— k maintains the current index of A[p..q], starting at p.
Until we reach the end of either L or M, pick the larger

among the elements from L and M and place them in
the correct position at A[p..q]

When we run out of elements in either L or M, pick up
the remaining elements and put in A[p..q]

No further call

s
start = end

b 4

o 7 8

v mid =

T O
E=3
v

No further call

as
start = end

No further call
as
start = end

LS

7 =]

L7

v

7

8 L=

(0+2)/2 = :

3 2 a1

+ mid = (0+5)/2 = 2
\

i S

No further call No further call

as as
start = end

start = end

= (3+5)/2 =4

No further call
as
start = end

Implementation

Vord Nergesortnt A, int temp) int et nt rgh |
It i
finght » et
mid» fight ¢) /2
Mergesort, temp, lft, i)
Mergesot{, temp, midt |, nght)
MergeA, temp, e, mid], gt

1
I|

Time Complexity

* Merge Sort is a stable sort which means that
the same element in an array maintain their
original positions with respect to each other.

* Overall time complexity of Merge sort is
O(nLogn).

* |t is more efficient as it is in worst case also
the runtime is O(nlogn) The space complexity
of Merge sort is O(n).

Analysis

In Merge sort the input list is divided into two
parts and these are solved recursively.

After solving the sub problems, they are
merged by scanning the resultant sub
problems.

Let us assume T(n) is the complexity of Merge
sort with n elements.

The recurrence for the Merge Sort can be
defined as:

Performance

Worst case complexity ; @(nlogn)

Best case complexity : ©(nlogn)

Average case complexity : ©(nlogn)

Worst case space complexity: 0(n) auxiliary

Quicksort

* Quick sort is an example of a divide-and-
conguer algorithmic technique. It is also
called partition exchange sort.

* |t uses recursive calls for sorting the
elements, and it is one of the famous
algorithms among comparison-based
sorting algorithms.

* Divide: The array Allow ...high] is
partitioned into two non-empty sub

arrays Allow ...q] and A[qg + 1... high],
such that each element of Allow ...

high] is less than or equal to each
element of A[g + 1... highl].

* The index g is computed as part
of this partitioning procedure.

 Conquer: The two sub arrays
Allow ...q] and A[g + 1 ...high] are
sorted by recursive calls to Quick
sort.

Algorithm

* The recursive algorithm consists of four
steps:

* 1) If there are one or no elements in the
array to be sorted, return.

e 2) Pick an element in the array to serve
as the “pivot” point. (Usually the left-
most element in the array is used.)

Algorithm

* 3) Split the array into two parts —one
with elements larger than the pivot
and the other with elements smaller
than the pivot.

* 4) Recursively repeat the algorithm
for both halves of the original array.

Implementation

void Quicksort(int A[), int low, int high) |
Int pivot;
/* Termination condition! */
if high > low) |
pivot = Partition(A, low, high);
Quicksort(A, low, pivot-1),
Quicksort(A, pivot+1, high J;

— —

int Partition(int A, int low, int high) |
int left, nght, pivot_item = A[low];
left = low;
right = high;
while (left < right) {
/* Move left while item < pivot */
while(Alleft] <= pivot_item)
left++:
/* Move right while item > pivot */
while(Alright] > pivot_item)
right--;
if(left < right)
swap|A. left. right);
i
/* right i1s final position for the pivot */
Allow] = A[right];
Alright] = pivot_item;
return right;

Analysis

Let us assume that T(n) be the complexity of
Quick sort and also assume that all elements are

distinct.

Recurrence for T(n) depends on two sub problem
sizes which depend on partition element.

If pivot is it smallest element then exactly (i — 1)
items will be in left part and (n — i) in right part.

Let us call it as i —split.

Since each element has equal probability of
selecting it as pivot the probability of selecting ith
elementis 1/n

* Best Case: Each partition splits array in halves
and gives

* T(n) =2T(n/2) + ©(n) = O(nlogn), [using Divide
and Conquer master theorem]

* Worst Case: Each partition gives unbalanced
splits and we get

e T(n)=T(n—-1) + ©(n) = 0(n2)[using
Subtraction and Conquer master theorem]

 The worst-case occurs when the list is already
sorted and last element chosen as pivot.

* Average Case: In the average case of Quick
sort, we do not know where the split happens.

* For this reason, we take all possible values of
split locations, add all their complexities and
divide with n to get the average case
complexity.

Nested Dependent Loops

for i =1 to n do
for j = i to n do

sum = sum + 1

221 Z(n i+1) = Z(n+1) Zu_

=l =i

n(n+1) n(n+1) N

n(n+1)— =
(n+1) > >

Recursion

A recursive procedure can often be analyzed
by solving a recursive equation

e Basic form:

T(n) = If (base case) then some constant
else (time to solve subproblems +
time to combine solutions)
« Result depends upon
— how many subproblems
— how much smaller are subproblems
— how costly to combine solutions (coefficients)

Example: Sum of Integer Queue

sum_queue (Q) {
if (Q.length == 0) return O;
else return Q.dequeue() +
sum_queue (Q); }
— One subproblem
— Linear reduction in size (decrease by 1)
— Combining: constant ¢ (+), 1xsubproblem

Equation: TO0) <D
T(n) £ ¢c + T(h-1) forn>0

Sum, Continued

Equation: T0) £ Db
T(n) £ ¢c + T(h-1) forn>0
Solution:

T(n) <c+c+T(n-2)
<ct+c+c+T(n-3)
<kc + T(n-k) for all k
<nc + T(0) for k=n
<cn+b = O(n)

Example: Recursive Fibonacci

Recursive Fibonacci:
int Fib(n) {
if (n == 0 or n == 1) return 1 ;
else return Fib(n - 1) + Fib(n - 2); }
Running time: Lower bound analysis
T(0), T(1)>1
TN)>T(n-1)+T(n-2)+c if n>1
Note: T(n) > Fib(n)
Fact: Fib(n) > (3/2)"
O((3/2)") Why?

Direct Proof of Recursive

Fibonacci
e Recursive Fibonacci:
int Fib(n)
if (n == 0 or n == 1) return 1

else return Fib(n - 1) + Fib(n - 2)

« Lower bound analysis
e T(0), T(1l) > Db
T(n) > T(n - 1) + T(n - 2) + ¢ if n > 1

* Analysis
letd be (1 + V5) /2 which satisfies 2 = ¢ + 1
show by inductionon n that T (n) >= b¢? - 1

Direct Proof Continued

 Basis: T(0) > b > bptandT(l) > b =
b°

* Inductive step: Assume T (m) > b¢= - 1 for all
m < n
T (n) T(n - 1) + T(n - 2) + c

bp?? + bp"> + c

bp"3(¢p + 1) + c

bp"3¢* + c

b(I)n—l

vV Il IV IV IV

Fibonaccl Call Tree

/5\
/\
A
/\ 0 1 2

FIGURE 7.7
Trace af

fibonacc1Startis)

(|
fibonacci Start(h) return fibofl, @&, 53

5 Cﬁ Fiboll, 1, 4);
3 Cci Fibo(2, 1,)
SC:tﬁ fibol(3, 2, I

1
: (r_e.tﬁl Fiba(5, 3, 13:
_J

5]
9

Recursive Definitions: Power

° XO:]_
e X"=Xx XM

public static double power
(double x, int n) {
if (n <= 0) // or: throw exc. if < 0
return 1;
else
return x * power (x, n-1);

Chapter 7: Recursion 10

Recursive Definitions: Factorial Code

public static int factorial (int n) {

if (n == 0) // or: throw exc. if < 0
return 1;
else

return n * factorial(n-1);

Chapter 7: Recursion 11

Another example

 The factorial function: multiply together all
numbers from 1 to n.

e denoted n!
nl=n*(n-1)*(n-2)*...2*1

1 if n==0 solution to a simpler sub-

n!ﬁ n*(n-1)! Ifn>0 &General case: Uses a
problem

€ Base case: Solution is
given directly

41=

41 Walk-through

rT% n*(n-1)!
1

If n>0
If n==0

Java implementation of n!

public int factorial(int n){
If (n==0)
return 1;

else
return n*factorial(n-1);

= n*(n-1)! 1fn>0
1 If n==

factorial(4)

factorial(4);

public int factorial(int

n){
If (n==0)
return 1;

else
return
n*factorial(n-

1);

public int factorial(int

' : n){
factorial(4); f (reso)
return 1,
else
-factorial(4) return
Returns 4*factorial (3) 2) .factonal(n-

public int factorial(int

factorial(4); |™

if (n==0)
return 1,
else
-factorial(4) retum
Returns@d*factorial(3) n*factorial(n-
n:‘é \>) 1);

Returns 3*factorial(2) }

factorial(4);

public int factorial(int

N1

If (n==0)
return 1;
else
-factorial(4) return
b b 1L n*factorial(n-
Returns@>*factoriai(3))
n—\) 1)1

Returns3*f

Returns 2*factorial(1)

)

public int factorial(int

factorial(4); |™ -

return 1;

lca
[A)

A\ |

-factorial(4)

Returns

return
n*factorial(n-

Returns 1*factorial(0)

A*factoriak(3)
N=o 1x
Returns BrTi“ctGriaI(Z) 1
Returns 2r’;‘jsictor=a!(l)

public int factorial(int

factorial(4); |™

If (n==0)
return 1;

aleca
wivw

-factorial(4)

Returns

return
n*factorial(n-

Returns=3*

farntArs

1);

Returns

)

Returns :

Returns 1

factorial(4); |™

public int factorial(int

If (n==0)
return 1;
else
‘ ' retum
n]_:glctorlal(4) i el
b b 1L n*factorial(n-
Returns@>*factoriai(3))
n=o]_),
Returns 3*faetortal(2) }

Returns 2*facterial{l)

Returns 1*facicrial(0)

factorial(4);

public int factorial(int

N1

If (n==0)
return 1;
else
-factorial(4) return
b b 1L n*factorial(n-
Returns@>*factoriai(3))
n—\) 1)1

Returns3*f

Returns 2*factorial(1)

)

public int factorial(int

factorial(4); |™

if (n==0)
return 1,
else
-factorial(4) retum
Returns@*factorial(3) n*factorial(n-
N=s]_),

Returns 3*factarial(2) }

factorial(4);

public int factorial(int

N1

if (n==0)
return 1,
else
-factorial(4) .
* = _
Returns 4*factarial(3) 2) .factonal(n

factorial(4)

factorial(4);

public int factorial(int

n){
If (n==0)
return 1;

else
return
n*factorial(n-

1);

Recursive Definitions: Greatest
Common Divisor

Definition of gcd(m, n), for integers m >n > 0:
» gcd(m, n) =n, iIf n divides m evenly
* gcd(m, n) = gcd(n, m % n), otherwise

public static int ged (int m, int n) {
1f (m < n)
return gcd(n, m) ;

else if (m $ n == 0) // could check n>0
return n;
else

return gcd(n, m % n);

Chapter 7: Recursion 26

Example: Binary Search

7 | 12| 30 35| 75| 83| 87| 90| 97| 99

One subproblem, half as large
Equation: T(1D)<Db

T(N)<T(n/2)+c forn>1
Solution:

T(N)<T(n/2) +c

<T(n/M4)+c+c
<T(n/8)+c+c+c

< T(n/2¥) + ke

<T(1)+clogn wherek=1logn
<b+clogn = 0O(logn)

Example: MergeSort

Split array in half, sort each half, merge together
— 2 subproblems, each half as large
— linear amount of work to combine

T(1) < b

T(n) < 2T(n/2) +cn for n>1
T(n) <2T(n/2)+cn < 2(2(T(n/4)+cn/2)+cn
=4T(n/4) +cn+cn < 4(2(T(n/8)+c(n/4))+cn+cn
= 8T(n/8)+cn+cn+cn < 2kT(n/2k)+kcen
< 2kT(1)+cnlogn wherek =1logn
= 0O(n log n)

Recursion Versus lteration

Recursion and 1teration are similar

Iteration:
— Loop repetition test determines whether to exit

Recursion:
— Condition tests for a base case

Can always write iterative solution to a problem solved
recursively, but:

Recursive code often simpler than iterative
— Thus easier to write, read, and debug

Chapter 7: Recursion 29

Searching

Definition

* Searching is the process of
finding an item with
specified properties from a
collection of items.

* The items may be stored as
— Records in a database
— Simple data elements in arrays
— Text in files
— Nodes in trees
Etc

Purpose of Searching

* Computers store a lot of
information.

* To retrieve information
proficiently searching
algorithms are used.

Types of searching

 Unordered Linear Serarch
* Sorted/Ordered Linear Search
* Binary Search

Unordered Linear Search

e Let us assume we are given an array where
the order of the elements is not known.

* Means the elements of the array are not
sorted.

* Here we have to scan the complete array and
see if the element is there in the given list or
not

Algorithm
Int unORderedLinearSearch(int A[], int

data)
For(int i=0; i<n;i++){
If(A[i]==data)
return i;

}

return -1;

Example

Input : A[] = {10, 20, 80, 30, 60, 50,
110, 100, 130, 170}
x=110;
Output : 6
Element x is present at index 6

Input : arr[] = {10, 20, 80, 30, 60, 50,
110, 100, 130, 170}
X =175;
Output : -1
Element x is not present in A[].

Complexity

 Time Complexity: O(n)

* In the worst case we need to scan
the complete array.

* Space Complexity: O(1)

Sorted/Ordered Linear Search

* If the elements of the array are already
sorted, we don’t have to scan the complete
array to see if the element is there in the

given array or not.

* In the algorithm below, if the value at A[i] is
greater than the data to be searched, then
we just return -1 without searching the

remaining array.

Algorithm

Int orderedLinearSearch(int A[], int n, int data){
for(int i=0; i<n ; i++){
if(A[i]==data)

return i;
else if(A[i] > data)
return -1;
}
return -1;

Example

Linear Search
Find '20'

— — —,
L o Fd

LY ra i " a4 -"-._‘I ‘.-"- I
./ \ \ \"-., N \ / \
AN q(1‘{ IIIf | \ I+

Complexity

 Time Complexity:O(n), in worst we scan the
complete array.

e Space Complexity: O(1).

Binary Search

Let us consider the problem of searching a word
in a dictionary.

It works on the principle of divide and conquer
technique.

We go to some approximate page(say, middle
page) and start searching from that point.

If the name that we are searching is the same
then the search is complete.

If the page is before the selected pages then
apply the same process for the first half;
otherwise apply the same to the second half.

* Binary search also works in the same way.

* The algorithm applying such a strategy is
referred to as binary search algorithm

Mid = low + (high-low)/2
or
Mid= (low+high)/2

Algorithm Method 1

 [/Iterative Binary Search Algorithm
int binarySearchlterative(int A[i], int n, int data)
int low=0;
while (low<=high){
mid=low + (high-low)/2; // To avoid overflow
if(A[mid] == data)
return mid;
else if (A[mid] < data)
low = mid + 1;
else high = mid - 1;
}

return -1;

Algorithm Method 2

» //Recursive Binary Search Algorithm
int binarySearchRecursive(int A[], low,int igh, int data)
int mid = low+(high-low)/2 // To avoid overflow
if((low>high)
return -1;
if(A[mid] == data)
return mid;
else if(A[mid] < data)
return BinarySearchRecursive(A, mid+1,
high,data);
else return BinarySearchRecursive(A,low, mid-1, data);
return -1;

Search 23

23>16
take 2" half

23>56
take 15t half

Found 23,
Return 5

Binary Search

0 | 2 3 4 5 6 ’ 8 9

2 |58 1216123 |38 |56 | 72| 91
L=0 1 2 3 M=4 5 6 Y 8 H=9
2 |58 12162338 |56 | 72| 91
0 1 2 3 4 | =5 6 M=7 3 H=9
2 |58 121612338 |56]| 72| 91
0 1 2 3 4 l5MSH=6 7 8 9

2 |58 (121623 |38 |56 | /72| 91

Advantages & Disadvantages

* Advantages:
— Binary search is much faster than linear search

— It eliminates half of the list from further searching by
using the result of each comparison.

— Time Complexity of Binary Search Algorithm is
O(log,n).
* Here, nis the number of elements in the sorted linear array.
— Linear search takes, on average N/2 comparisons

(where N is the number of elements in the array), and
worst case N comparisons.

— It indicates whether the element being searched is
before or after the current position in the list.

* Disadvantages

— It works only on lists that are sorted and kept
sorted.

— It works only on element types for which there
exists a less-than(<) relationship.

— It employs recursive approach which requires
more stack space.

Selection Sort

* Selection sort is an in-place sorting algorithm.
Selection sort works well for small files.

* |t is for sorting the files with very large values
used and small keys.

* This is because selection is made based on
keys and swaps are made only when
required.

Advantages

* Easy to implement

* In-place sort (requires no
additional storage space)

Disadvantages

* Doesn’t scale well: O(n?)

Algorithm

1. Find the minimum value in the list

2. Swap it with the value in the current
position

3. Repeat this process for all the elements
until the entire array is sorted

This algorithm is called selection sort since it
repeatedly selects the smallest element.

Implementation

void Selectionfint A [], int n} |
Int 1, J, min, temp;
for(i=0;i<n-1;it4)
mm = 1;
for (j = it1;] < n; jt+4) |
if{A [j] < A [min])
min =

|| swap elements
temp = Almin|;
Almm| = Afi;
All] = temp;

Performance

Worst case complexity ; O()

Best case complexity ; O(1)

Average case complexity ; O(n)

Worst case space complexity: O(1) auxiliary

Sorting

Definition

e Sorting is an algorithm that
arranges the elements of a list in
a certain order [either ascending
or descending].

* The output is a permutation or
reordering of the input.

Why is Sorting Necessary?

e Sorting can significantly reduce
the complexity of a problem.

 Used for database algorithms
and searches.

Classifications

*sorting algorithms are
classified into

—|Internal Sort
—External Sort

Internal Sort

Sort algorithms use main memory exclusively during
the sort are called internal sorting algorithms.

This kind of algorithm assumes high-speed random
access to all memory.

Bubble Sort.
Insertion Sort.
Quick Sort.
Heap Sort.
Radix Sort.
Selection sort.

External Sort

* Sorting algorithms that use external memory,

such as tape or disk, during the sort come
under this category.

* Distribution sorting,

—which resembles quicksort,

e external merge sort,

—which resembles merge sort.

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort

Classification of Sorting Algorithms

Sorting algorithms are generally categorized
based on the following parameters.

By Number of Comparisons
By Number of Swaps

By Memory Usage

By Recursion

By Stability

By Adaptability

Bubble Sort

Bubble sort is the simplest sorting algorithm.

It works by iterating the input array from the first element to the last,
comparing each pair of elements and swapping them if needed.

Bubble sort continues its iterations until no more swaps are needed.

The algorithm gets its name from the way smaller elements “bubble”
to the top of the list.

The only significant advantage is that it can detect whether the input
list is already sorted or not.

Implementation
void BubbleSort(int A[], int n) |
for (int pass = n - 1; pass >= 0; pass--){
for (inti=0;1<=pass- | ;i++ |
H(A[i] > Ai+1]) §
/| swap elements
int temp = Ali];
Ali] = Ali+1]);
Ali+l] = temp;
!

-

* Algorithm takes O(n?) (even in best case).
* We can improve it by using one extra flag.

* No more swaps indicate the completion of
sorting. If the list is already sorted, we can use
this flag to skip the remaining passes.

void BubbleSortimproved(int Al], int n |
int pass, 1, temp, swapped = 1;
for (pass = n - 1; pass >= 0 && swapped; pass--) |
swapped = 0;
fori=0;1<=pass-1;1+4) |
AL > Afi+1]) |
[/ swap elements
temp = Alil;
Ali] = Ali+1};
Afi+1] = temp;
swapped = 1,

Performance

This modified version improves the best case
of bubble sort to O(n).

Worst case complexity : O(n2)
Best case complexity (Improved version) : O(n)

Average case complexity (Basic version) :
O(n2)

Worst case space complexity : O(1) auxiliary

