
Insertion Sort 



• Insertion sort is a simple and efficient 
comparison sort.  

• In this algorithm, each iteration removes an 
element from the input data and inserts it into 
the correct position in the list being sorted. 

• The choice of the element being removed 
from the input is random and this process is 
repeated until all input elements have gone 
through. 



Advantages 
•  Simple implementation 
•  Efficient for small data 
•  Adaptive: If the input list is presorted [may not   
     be completely] then insertions sort takes O(n +  
     d), where d is the number of inversions 
• Practically more efficient than selection and bubble sorts, 

even though all of them have O(n2) worst case complexity 
• Stable: Maintains relative order of input data if the 

keys(temp variable) are same 
• In-place: It requires only a constant amount O(1) of 

additional memory space 
• Online: Insertion sort can sort the list as it receives it 



Algorithm 

• Step 1 − If it is the first element, it is already 
sorted. return 1; 

• Step 2 − Pick next element 
• Step 3 − Compare with all elements in the sorted 

sub-list 
• Step 4 − Shift all the elements in the sorted sub-

list that is greater than the  
•          value to be sorted 
• Step 5 − Insert the value 
• Step 6 − Repeat until list is sorted 

 



• Algorithm 
• Every repetition of insertion sort removes an 

element from the input data, and inserts it into 
the correct position in the already-sorted list 
until no input elements remain.  

• Sorting is typically done in-place.  
• The resulting array after k iterations has the 

property where the first k + 1 entries are sorted. 
• Each element greater than x is copied to the right 

as it is compared against x. 







• Example 

• Given an array: 6 8 1 4 5 3 7 2 and the goal is 
to put them in ascending order. 



• Analysis 

• Worst case analysis 

• Worst case occurs when for every i the inner 
loop has to move all elements A[1], . . . , A[i – 
1] (which happens when A[i] = key is smaller 
than all of them), that takes Θ(i – 1) time. 





• Average case analysis 

• For the average case, the inner loop will insert 
A[i] in the middle of A[1], . . . , A[i – 1]. This 
takes Θ(i/2) time. 

 

 



• Performance 

• If every element is greater than or equal to 
every element to its left, the running time of 
insertion sort is Θ(n).  

• This situation occurs if the array starts out 
already sorted, and so an already-sorted array 
is the best case for insertion sort. 





• Comparisons to Other Sorting Algorithms 
• Insertion sort is one of the elementary sorting 

algorithms with O(n2) worst-case time.  
• Insertion sort is used when the data is nearly 

sorted (due to its adaptiveness) or when the 
input size is small (due to its low overhead).  

• For these reasons and due to its stability, 
insertion sort is used as the recursive base case 
(when the problem size is small) for higher 
overhead divide-and-conquer sorting 
algorithms, such as merge sort or quick sort. 



Linear Search 

• Let us assume we are given an array where 
the order of the elements is not known. 

• Means the elements of the array are not 
sorted.  

• Here we have to scan the complete array and 
see if the element is there in the given list or 
not 

 



Algorithm 
Int unORderedLinearSearch(int A[], int 
data) 

     For(int i=0; i<n;i++){ 

 If(A[i]==data) 

             return i; 

      } 

 return -1; 

} 

 



Complexity 

• Time Complexity: O(n) 

• In the worst case we need to scan 
the complete array. 

• Space Complexity: O(1) 



Algorithm 

Int orderedLinearSearch(int A[], int n, int data){ 
  for(int i=0; i<n ; i++){ 
  if(A[i]==data) 
   return i; 
  else if(A[i] > data)  
   return -1; 
 } 
          return -1; 
} 



Example 



Complexity 

• Time Complexity:O(n), in worst we scan the 
complete array.  

• Space Complexity: O(1). 



Merge Sort 



• Merge sort is an example of the 
divide and conquer strategy. 

• Merging is the process of 
combining two sorted files to 
make one bigger sorted file. 



• Selection is the process of dividing a file 
into two parts: k smallest elements and n 
– k largest elements. 

• Selection and merging are opposite 
operations 

– selection splits a list into two lists 

–merging joins two files to make one file 



• Merge sort is Quick sort’s 
complement 

• Merge sort accesses the data in a 
sequential manner 

• This algorithm is used for sorting a 
linked list 



• Merge sort is insensitive to the initial order of 
its input 

•  In Quick sort most of the work is done before 
the recursive calls.  

• Quick sort starts with the largest sub file and 
finishes with the small ones and as a result it 
needs stack.  

• This algorithm is not stable.  

 



• Merge sort divides the list into two parts; 
then each part is conquered individually.  

• Merge sort starts with the small subfiles 
and finishes with the largest one.  

• As a result it doesn’t need stack.  

• This algorithm is stable. 



Algorithm  

1. Divide the unsorted list into sub lists, each 
containing element. 

2. Take adjacent pairs of two singleton lists 
and merge them to form a list of 2 elements. 
N. will now convert into lists of size 2. 

3. Repeat the process till a single sorted list of 
obtained. 

 



Algorithm 

• The merge function works as follows: 
• Create copies of the subarrays L ← A[p..q] and M ← 

A[q+1..r]. 
• Create three pointers i, j and k 

– i maintains current index of L, starting at 1 
– j maintains current index of M, starting at 1 
– k maintains the current index of A[p..q], starting at p. 

• Until we reach the end of either L or M, pick the larger 
among the elements from L and M and place them in 
the correct position at A[p..q] 

• When we run out of elements in either L or M, pick up 
the remaining elements and put in A[p..q] 
 



Example 



Implementation 





   



Time Complexity 

• Merge Sort is a stable sort which means that 
the same element in an array maintain their 
original positions with respect to each other.  

• Overall time complexity of Merge sort is 
O(nLogn).  

• It is more efficient as it is in worst case also 
the runtime is O(nlogn) The space complexity 
of Merge sort is O(n). 



Analysis 
 

• In Merge sort the input list is divided into two 
parts and these are solved recursively.  

• After solving the sub problems, they are 
merged by scanning the resultant sub 
problems.  

• Let us assume T(n) is the complexity of Merge 
sort with n elements.  

• The recurrence for the Merge Sort can be 
defined as: 





Performance 



Quicksort 



• Quick sort is an example of a divide-and-
conquer algorithmic technique. It is also 
called partition exchange sort.  

• It uses recursive calls for sorting the 
elements, and it is one of the famous 
algorithms among comparison-based 
sorting algorithms. 



• Divide: The array A[low ...high] is 
partitioned into two non-empty sub 
arrays A[low ...q] and A[q + 1... high], 
such that each element of A[low ... 
high] is less than or equal to each 
element of A[q + 1... high].  



• The index q is computed as part 
of this partitioning procedure. 

• Conquer: The two sub arrays 
A[low ...q] and A[q + 1 ...high] are 
sorted by recursive calls to Quick 
sort. 



Algorithm 
• The recursive algorithm consists of four 

steps: 

• 1) If there are one or no elements in the 
array to be sorted, return. 

• 2) Pick an element in the array to serve 
as the “pivot” point. (Usually the left-
most element in the array is used.) 

 



Algorithm 

• 3) Split the array into two parts – one 
with elements larger than the pivot 
and the other with elements smaller 
than the pivot. 

• 4) Recursively repeat the algorithm 
for both halves of the original array. 



Implementation 





Analysis 

• Let us assume that T(n) be the complexity of 
Quick sort and also assume that all elements are 
distinct.  

• Recurrence for T(n) depends on two sub problem 
sizes which depend on partition element.  

• If pivot is ith smallest element then exactly (i – 1) 
items will be in left part and (n – i) in right part.  

• Let us call it as i –split.  
• Since each element has equal probability of 

selecting it as pivot the probability of selecting ith 
element is 1/n 



• Best Case: Each partition splits array in halves 
and gives 

• T(n) = 2T(n/2) + Θ(n) = Θ(nlogn), [using Divide 
and Conquer master theorem] 



• Worst Case: Each partition gives unbalanced 
splits and we get 

• T(n) = T(n – 1) + Θ(n) = Θ(n2)[using 
Subtraction and Conquer master theorem] 

• The worst-case occurs when the list is already 
sorted and last element chosen as pivot. 



• Average Case: In the average case of Quick 
sort, we do not know where the split happens.  

• For this reason, we take all possible values of 
split locations, add all their complexities and 
divide with n to get the average case 
complexity. 



Nested Dependent Loops 

for i = 1 to n do 

  for j = i to n do 

    sum = sum + 1 
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Recursion 

• A recursive procedure can often be analyzed 
by solving a recursive equation 

• Basic form: 

T(n)  =  if (base case) then some constant 

  else ( time to solve subproblems + 

   time to combine solutions ) 

• Result depends upon 

– how many subproblems 

– how much smaller are subproblems 

– how costly to combine solutions (coefficients) 



Example: Sum of Integer Queue 

sum_queue(Q){ 

 if (Q.length == 0 ) return 0; 

 else return Q.dequeue() + 

    sum_queue(Q);  } 

– One subproblem 

– Linear reduction in size (decrease by 1) 

– Combining:  constant c (+),  1×subproblem 

 

Equation: T(0)   b 

  T(n)   c  +  T(n – 1)    for n>0 



Sum, Continued 

Equation: T(0)   b 

   T(n)   c  +  T(n – 1)    for n>0 

Solution: 

 
T(n)   c + c + T(n-2) 

  c + c + c + T(n-3) 

  kc + T(n-k)   for all k 

  nc + T(0)   for k=n 

  cn + b    =  O(n) 



Example: Recursive Fibonacci 

• Recursive Fibonacci: 

 int Fib(n){ 

   if (n == 0 or n == 1) return 1 ; 

    else return Fib(n - 1) + Fib(n - 2); } 

• Running time: Lower bound analysis 

  T(0),  T(1)  1 

  T(n)  T(n - 1) + T(n - 2) + c    if   n > 1 

• Note:  T(n)  Fib(n) 

• Fact:  Fib(n)  (3/2)n 

    O(  (3/2)n  )       Why? 



Direct Proof of Recursive 

Fibonacci 

• Recursive Fibonacci: 
 int Fib(n) 

   if (n == 0 or n == 1) return 1 

    else return Fib(n - 1) + Fib(n - 2) 

• Lower bound analysis 
• T(0), T(1) >= b 

 T(n) >= T(n - 1) + T(n - 2) + c  if n > 1 

• Analysis 
 let  be (1 + 5)/2 which satisfies 2 =  + 1 

 show by induction on n  that T(n) >= bn - 1 



Direct Proof Continued 

• Basis: T(0)  b > b-1 and T(1)  b = 
b0 

• Inductive step: Assume T(m)  bm - 1 for all 
m < n 

 T(n)  T(n - 1) + T(n - 2) + c 

       bn-2 + bn-3 + c 

       bn-3( + 1) + c 

      = bn-32 + c 

       bn-1 



Fibonacci Call Tree 
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Efficient Fibonacci: A Trace 

Performance is O(n) 
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Recursive Definitions: Power 

• x0 = 1 

• xn = x  xn-1  
 

public static double power 

    (double x, int n) { 

  if (n <= 0)  // or: throw exc. if < 0 

    return 1; 

  else 

    return x * power(x, n-1); 

} 
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public static int factorial (int n) { 

  if (n == 0) // or: throw exc. if < 0 

    return 1; 

  else 

    return n * factorial(n-1); 

} 

 

Recursive Definitions: Factorial Code 



Another example 

• The factorial function: multiply together all 

numbers from 1 to n.  

• denoted n! 

n!=n*(n-1)*(n-2)*…2*1 

 

n!=   n*(n-1)! if n>0 

        1  if n==0 

General case: Uses a 

solution to a simpler sub-

problem 

Base case: Solution is 

given directly 



4! Walk-through 

4!= 

n!=   n*(n-1)! if n>0 

        1  if n==0 



Java implementation of n! 

public int factorial(int n){ 

if (n==0) 

return  1; 

else 

return n*factorial(n-1); 

} 

n!=   n*(n-1)! if n>0 

        1  if n==0 



factorial(4); 

factorial(4) 
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public int factorial(int 

n){ 

    if (n==0) 

        return  1; 
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        return 
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factorial(4) 

public int factorial(int 

n){ 

    if (n==0) 

        return  1; 

    else 

        return 

n*factorial(n-

1); 

} 

n=4 

Returns 4*factorial(3) 
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factorial(4); 

factorial(4) 

public int factorial(int 

n){ 

    if (n==0) 

        return  1; 

    else 

        return 

n*factorial(n-

1); 

} 

24 
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Recursive Definitions: Greatest 

Common Divisor 
Definition of gcd(m, n), for integers m > n > 0: 
• gcd(m, n) = n, if n divides m evenly 
• gcd(m, n) = gcd(n, m % n), otherwise 
 

public static int gcd (int m, int n) { 

  if (m < n) 

    return gcd(n, m); 

  else if (m % n == 0) // could check n>0 

    return n; 

  else 

    return gcd(n, m % n); 

} 



Example: Binary Search 

One subproblem, half as large 

Equation:   T(1)  b 

   T(n)  T(n/2) + c       for n>1 

Solution: 

7 12 30 35 75 83 87 90 97 99 

T(n)  T(n/2) + c 

  T(n/4) + c + c 

  T(n/8) + c + c + c 

  T(n/2k) + kc 

  T(1) + c log n    where k = log n 

  b + c log n     =    O(log n) 



Example: MergeSort 

Split array in half, sort each half, merge together 

– 2 subproblems, each half as large 

– linear amount of work to combine 

  T(1)    b 

  T(n)    2T(n/2) + cn       for n>1 

T(n)  2T(n/2)+cn          2(2(T(n/4)+cn/2)+cn 

= 4T(n/4) +cn +cn          4(2(T(n/8)+c(n/4))+cn+cn 

= 8T(n/8)+cn+cn+cn        2kT(n/2k)+kcn 

  2kT(1) + cn log n     where k = log n       

 = O(n log n) 
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Recursion Versus Iteration 

• Recursion and iteration are similar 

• Iteration: 

– Loop repetition test determines whether to exit 

• Recursion: 

– Condition tests for a base case  

• Can always write iterative solution to a problem solved 

recursively, but: 

• Recursive code often simpler than iterative 

– Thus easier to write, read, and debug 



Searching 



Definition 

• Searching is the process of 
finding an item with 
specified properties from a 
collection of items.  



• The items may be stored as  

– Records in a database 

– Simple data elements in arrays 

– Text in files 

– Nodes in trees 

Etc 

 



Purpose of Searching 

• Computers store a lot of 
information. 

• To retrieve information 
proficiently searching 
algorithms are used.  



Types of searching 

• Unordered Linear Serarch 

• Sorted/Ordered Linear Search 

• Binary Search 



Unordered Linear Search 

• Let us assume we are given an array where 
the order of the elements is not known. 

• Means the elements of the array are not 
sorted.  

• Here we have to scan the complete array and 
see if the element is there in the given list or 
not 

 



Algorithm 
Int unORderedLinearSearch(int A[], int 
data) 

     For(int i=0; i<n;i++){ 

 If(A[i]==data) 

             return i; 

      } 

 return -1; 

} 

 



Example 

Input : A[] = {10, 20, 80, 30, 60, 50,  

                     110, 100, 130, 170} 

          x = 110; 

Output : 6 

Element x is present at index 6 

 

Input : arr[] = {10, 20, 80, 30, 60, 50,  

                     110, 100, 130, 170} 

           x = 175; 

Output : -1 

Element x is not present in A[]. 



Complexity 

• Time Complexity: O(n) 

• In the worst case we need to scan 
the complete array. 

• Space Complexity: O(1) 



Sorted/Ordered Linear Search 
• If the elements of the array are already 

sorted, we don’t have to scan the complete 
array  to see if the element is there in the 
given array or not. 

• In the algorithm below, if the value at A[i] is 
greater than the data to be searched, then 
we just return -1 without searching the 
remaining array. 

 



Algorithm 

Int orderedLinearSearch(int A[], int n, int data){ 
  for(int i=0; i<n ; i++){ 
  if(A[i]==data) 
   return i; 
  else if(A[i] > data)  
   return -1; 
 } 
          return -1; 
} 



Example 



Complexity 

• Time Complexity:O(n), in worst we scan the 
complete array.  

• Space Complexity: O(1). 



Binary Search 

• Let us consider the problem of searching a word 
in a dictionary. 

• It works on the principle of divide and conquer 
technique. 

• We go to some approximate page(say, middle 
page) and start searching from that point.  

• If the name that we are searching is the same 
then the search is complete.  

• If the page is before the selected pages then 
apply the same process for the first half; 
otherwise apply the same to the second half.  



• Binary search also works in the same way.  

• The algorithm applying such a strategy is 
referred to as binary search algorithm 

 Mid = low + (high-low)/2 

                or  

       Mid=  (low+high)/2 



Algorithm Method 1 
• //Iterative Binary Search Algorithm 
int binarySearchIterative(int A[i], int n, int data) 
 int low=0; 
 while (low<=high){ 
      mid=low + (high-low)/2; // To avoid overflow 
       if(A[mid] == data) 
  return mid; 
       else if (A[mid] < data)  
  low = mid + 1; 
        else high = mid – 1; 
 } 
               return -1; 
} 



Algorithm Method 2 

• //Recursive Binary Search Algorithm 
int binarySearchRecursive(int A[], low,int igh, int data) 
 int mid = low+(high-low)/2 // To avoid overflow 
 if((low>high) 
  return -1; 
 if(A[mid] == data) 
  return mid; 
 else if(A[mid] < data) 
  return BinarySearchRecursive(A, mid+1,   
                                                                              high,data); 
 else  return BinarySearchRecursive(A,low, mid-1, data); 
 return -1; 
}     
 
 



Example 



Advantages & Disadvantages 

• Advantages:  
– Binary search is much faster than linear search  
– It eliminates half of the list from further searching by 

using the result of each comparison.  
– Time Complexity of Binary Search Algorithm is 

O(log2n). 
• Here, n is the number of elements in the sorted linear array. 

–  Linear search takes, on average N/2 comparisons 
(where N is the number of elements in the array), and 
worst case N comparisons. 

– It indicates whether the element being searched is 
before or after the current position in the list. 
 



• Disadvantages 

– It works only on lists that are sorted and kept 
sorted. 

– It works only on element types for which there 
exists a less-than(<) relationship. 

– It employs recursive approach which requires 
more stack space. 



Selection Sort 



• Selection sort is an in-place sorting algorithm. 
Selection sort works well for small files.  

• It is for sorting the files with very large values 
used and small keys. 

• This is because selection is made based on 
keys and swaps are made only when 
required. 



Advantages 

• Easy to implement 

• In-place sort (requires no 
additional storage space) 



Disadvantages 
 

•Doesn’t scale well: O(n2) 



Algorithm 
 

• 1. Find the minimum value in the list 

• 2. Swap it with the value in the current 
position 

• 3. Repeat this process for all the elements 
until the entire array is sorted 

• This algorithm is called selection sort since it 
repeatedly selects the smallest element. 



Implementation 



Performance 



Sorting  



Definition 

• Sorting is an algorithm that 
arranges the elements of a list in 
a certain order [either ascending 
or descending].  

• The output is a permutation or 
reordering of the input. 



Why is Sorting Necessary? 
 

• Sorting can significantly reduce 
the complexity of a problem. 

• Used for database algorithms 
and searches. 



Classifications 

• sorting algorithms are 
classified into 

–Internal Sort 

–External Sort 



Internal Sort 
 

• Sort algorithms use main memory exclusively during 
the sort are called internal sorting algorithms.  

• This kind of algorithm assumes high-speed random 
access to all memory. 

• Bubble Sort. 

• Insertion Sort. 

• Quick Sort. 

• Heap Sort. 

• Radix Sort. 

• Selection sort. 

 



External Sort 
 

• Sorting algorithms that use external memory, 
such as tape or disk, during the sort come 
under this category. 

• Distribution sorting, 

–which resembles quicksort,  

• external merge sort,  

–which resembles merge sort. 

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort


Classification of Sorting Algorithms 

• Sorting algorithms are generally categorized 
based on the following parameters. 

• By Number of Comparisons 

• By Number of Swaps 

• By Memory Usage 

• By Recursion 

• By Stability 

• By Adaptability 



Bubble Sort 
 

• Bubble sort is the simplest sorting algorithm.  

 

• It works by iterating the input array from the first element to the last, 
comparing each pair of elements and swapping them if needed.  

 

• Bubble sort continues its iterations until no more swaps are needed.  

 

• The algorithm gets its name from the way smaller elements “bubble” 
to the top of the list.  

 

• The only significant advantage is that it can detect whether the input 
list is already sorted or not. 



Implementation 



• Algorithm takes O(n2) (even in best case). 

• We can improve it by using one extra flag. 

•  No more swaps indicate the completion of 
sorting. If the list is already sorted, we can use 
this flag to skip the remaining passes. 





Performance 
 

• This modified version improves the best case 
of bubble sort to O(n). 

• Worst case complexity : O(n2) 

• Best case complexity (Improved version) : O(n) 

• Average case complexity (Basic version) : 
O(n2) 

• Worst case space complexity : O(1) auxiliary 


