
Insertion Sort

• Insertion sort is a simple and efficient
comparison sort.

• In this algorithm, each iteration removes an
element from the input data and inserts it into
the correct position in the list being sorted.

• The choice of the element being removed
from the input is random and this process is
repeated until all input elements have gone
through.

Advantages
• Simple implementation
• Efficient for small data
• Adaptive: If the input list is presorted [may not
 be completely] then insertions sort takes O(n +
 d), where d is the number of inversions
• Practically more efficient than selection and bubble sorts,

even though all of them have O(n2) worst case complexity
• Stable: Maintains relative order of input data if the

keys(temp variable) are same
• In-place: It requires only a constant amount O(1) of

additional memory space
• Online: Insertion sort can sort the list as it receives it

Algorithm

• Step 1 − If it is the first element, it is already
sorted. return 1;

• Step 2 − Pick next element
• Step 3 − Compare with all elements in the sorted

sub-list
• Step 4 − Shift all the elements in the sorted sub-

list that is greater than the
• value to be sorted
• Step 5 − Insert the value
• Step 6 − Repeat until list is sorted

• Algorithm
• Every repetition of insertion sort removes an

element from the input data, and inserts it into
the correct position in the already-sorted list
until no input elements remain.

• Sorting is typically done in-place.
• The resulting array after k iterations has the

property where the first k + 1 entries are sorted.
• Each element greater than x is copied to the right

as it is compared against x.

• Example

• Given an array: 6 8 1 4 5 3 7 2 and the goal is
to put them in ascending order.

• Analysis

• Worst case analysis

• Worst case occurs when for every i the inner
loop has to move all elements A[1], . . . , A[i –
1] (which happens when A[i] = key is smaller
than all of them), that takes Θ(i – 1) time.

• Average case analysis

• For the average case, the inner loop will insert
A[i] in the middle of A[1], . . . , A[i – 1]. This
takes Θ(i/2) time.

• Performance

• If every element is greater than or equal to
every element to its left, the running time of
insertion sort is Θ(n).

• This situation occurs if the array starts out
already sorted, and so an already-sorted array
is the best case for insertion sort.

• Comparisons to Other Sorting Algorithms
• Insertion sort is one of the elementary sorting

algorithms with O(n2) worst-case time.
• Insertion sort is used when the data is nearly

sorted (due to its adaptiveness) or when the
input size is small (due to its low overhead).

• For these reasons and due to its stability,
insertion sort is used as the recursive base case
(when the problem size is small) for higher
overhead divide-and-conquer sorting
algorithms, such as merge sort or quick sort.

Linear Search

• Let us assume we are given an array where
the order of the elements is not known.

• Means the elements of the array are not
sorted.

• Here we have to scan the complete array and
see if the element is there in the given list or
not

Algorithm
Int unORderedLinearSearch(int A[], int
data)

 For(int i=0; i<n;i++){

 If(A[i]==data)

 return i;

 }

 return -1;

}

Complexity

• Time Complexity: O(n)

• In the worst case we need to scan
the complete array.

• Space Complexity: O(1)

Algorithm

Int orderedLinearSearch(int A[], int n, int data){
 for(int i=0; i<n ; i++){
 if(A[i]==data)
 return i;
 else if(A[i] > data)
 return -1;
 }
 return -1;
}

Example

Complexity

• Time Complexity:O(n), in worst we scan the
complete array.

• Space Complexity: O(1).

Merge Sort

• Merge sort is an example of the
divide and conquer strategy.

• Merging is the process of
combining two sorted files to
make one bigger sorted file.

• Selection is the process of dividing a file
into two parts: k smallest elements and n
– k largest elements.

• Selection and merging are opposite
operations

– selection splits a list into two lists

–merging joins two files to make one file

• Merge sort is Quick sort’s
complement

• Merge sort accesses the data in a
sequential manner

• This algorithm is used for sorting a
linked list

• Merge sort is insensitive to the initial order of
its input

• In Quick sort most of the work is done before
the recursive calls.

• Quick sort starts with the largest sub file and
finishes with the small ones and as a result it
needs stack.

• This algorithm is not stable.

• Merge sort divides the list into two parts;
then each part is conquered individually.

• Merge sort starts with the small subfiles
and finishes with the largest one.

• As a result it doesn’t need stack.

• This algorithm is stable.

Algorithm

1. Divide the unsorted list into sub lists, each
containing element.

2. Take adjacent pairs of two singleton lists
and merge them to form a list of 2 elements.
N. will now convert into lists of size 2.

3. Repeat the process till a single sorted list of
obtained.

Algorithm

• The merge function works as follows:
• Create copies of the subarrays L ← A[p..q] and M ←

A[q+1..r].
• Create three pointers i, j and k

– i maintains current index of L, starting at 1
– j maintains current index of M, starting at 1
– k maintains the current index of A[p..q], starting at p.

• Until we reach the end of either L or M, pick the larger
among the elements from L and M and place them in
the correct position at A[p..q]

• When we run out of elements in either L or M, pick up
the remaining elements and put in A[p..q]

Example

Implementation

Time Complexity

• Merge Sort is a stable sort which means that
the same element in an array maintain their
original positions with respect to each other.

• Overall time complexity of Merge sort is
O(nLogn).

• It is more efficient as it is in worst case also
the runtime is O(nlogn) The space complexity
of Merge sort is O(n).

Analysis

• In Merge sort the input list is divided into two
parts and these are solved recursively.

• After solving the sub problems, they are
merged by scanning the resultant sub
problems.

• Let us assume T(n) is the complexity of Merge
sort with n elements.

• The recurrence for the Merge Sort can be
defined as:

Performance

Quicksort

• Quick sort is an example of a divide-and-
conquer algorithmic technique. It is also
called partition exchange sort.

• It uses recursive calls for sorting the
elements, and it is one of the famous
algorithms among comparison-based
sorting algorithms.

• Divide: The array A[low ...high] is
partitioned into two non-empty sub
arrays A[low ...q] and A[q + 1... high],
such that each element of A[low ...
high] is less than or equal to each
element of A[q + 1... high].

• The index q is computed as part
of this partitioning procedure.

• Conquer: The two sub arrays
A[low ...q] and A[q + 1 ...high] are
sorted by recursive calls to Quick
sort.

Algorithm
• The recursive algorithm consists of four

steps:

• 1) If there are one or no elements in the
array to be sorted, return.

• 2) Pick an element in the array to serve
as the “pivot” point. (Usually the left-
most element in the array is used.)

Algorithm

• 3) Split the array into two parts – one
with elements larger than the pivot
and the other with elements smaller
than the pivot.

• 4) Recursively repeat the algorithm
for both halves of the original array.

Implementation

Analysis

• Let us assume that T(n) be the complexity of
Quick sort and also assume that all elements are
distinct.

• Recurrence for T(n) depends on two sub problem
sizes which depend on partition element.

• If pivot is ith smallest element then exactly (i – 1)
items will be in left part and (n – i) in right part.

• Let us call it as i –split.
• Since each element has equal probability of

selecting it as pivot the probability of selecting ith
element is 1/n

• Best Case: Each partition splits array in halves
and gives

• T(n) = 2T(n/2) + Θ(n) = Θ(nlogn), [using Divide
and Conquer master theorem]

• Worst Case: Each partition gives unbalanced
splits and we get

• T(n) = T(n – 1) + Θ(n) = Θ(n2)[using
Subtraction and Conquer master theorem]

• The worst-case occurs when the list is already
sorted and last element chosen as pivot.

• Average Case: In the average case of Quick
sort, we do not know where the split happens.

• For this reason, we take all possible values of
split locations, add all their complexities and
divide with n to get the average case
complexity.

Nested Dependent Loops

for i = 1 to n do

 for j = i to n do

 sum = sum + 1

 


inin
n

i

n

i

n

i

n

ij

n

i 111

)1()1(1

2

2

)1(

2

)1(
)1(n

nnnn
nn 







Recursion

• A recursive procedure can often be analyzed
by solving a recursive equation

• Basic form:

T(n) = if (base case) then some constant

 else (time to solve subproblems +

 time to combine solutions)

• Result depends upon

– how many subproblems

– how much smaller are subproblems

– how costly to combine solutions (coefficients)

Example: Sum of Integer Queue

sum_queue(Q){

 if (Q.length == 0) return 0;

 else return Q.dequeue() +

 sum_queue(Q); }

– One subproblem

– Linear reduction in size (decrease by 1)

– Combining: constant c (+), 1×subproblem

Equation: T(0)  b

 T(n)  c + T(n – 1) for n>0

Sum, Continued

Equation: T(0)  b

 T(n)  c + T(n – 1) for n>0

Solution:

T(n)  c + c + T(n-2)

  c + c + c + T(n-3)

  kc + T(n-k) for all k

  nc + T(0) for k=n

  cn + b = O(n)

Example: Recursive Fibonacci

• Recursive Fibonacci:

 int Fib(n){

 if (n == 0 or n == 1) return 1 ;

 else return Fib(n - 1) + Fib(n - 2); }

• Running time: Lower bound analysis

 T(0), T(1)  1

 T(n)  T(n - 1) + T(n - 2) + c if n > 1

• Note: T(n)  Fib(n)

• Fact: Fib(n)  (3/2)n

 O((3/2)n) Why?

Direct Proof of Recursive

Fibonacci

• Recursive Fibonacci:
 int Fib(n)

 if (n == 0 or n == 1) return 1

 else return Fib(n - 1) + Fib(n - 2)

• Lower bound analysis
• T(0), T(1) >= b

 T(n) >= T(n - 1) + T(n - 2) + c if n > 1

• Analysis
 let  be (1 + 5)/2 which satisfies 2 =  + 1

 show by induction on n that T(n) >= bn - 1

Direct Proof Continued

• Basis: T(0)  b > b-1 and T(1)  b =
b0

• Inductive step: Assume T(m)  bm - 1 for all
m < n

 T(n)  T(n - 1) + T(n - 2) + c

  bn-2 + bn-3 + c

  bn-3( + 1) + c

 = bn-32 + c

  bn-1

Fibonacci Call Tree

5

3

1 2

0 1

4

2

0 1

3

1 2

0 1

9

Efficient Fibonacci: A Trace

Performance is O(n)

Chapter 7: Recursion 10

Recursive Definitions: Power

• x0 = 1

• xn = x  xn-1

public static double power

 (double x, int n) {

 if (n <= 0) // or: throw exc. if < 0

 return 1;

 else

 return x * power(x, n-1);

}

Chapter 7: Recursion 11

public static int factorial (int n) {

 if (n == 0) // or: throw exc. if < 0

 return 1;

 else

 return n * factorial(n-1);

}

Recursive Definitions: Factorial Code

Another example

• The factorial function: multiply together all

numbers from 1 to n.

• denoted n!

n!=n*(n-1)*(n-2)*…2*1

n!= n*(n-1)! if n>0

 1 if n==0

General case: Uses a

solution to a simpler sub-

problem

Base case: Solution is

given directly

4! Walk-through

4!=

n!= n*(n-1)! if n>0

 1 if n==0

Java implementation of n!

public int factorial(int n){

if (n==0)

return 1;

else

return n*factorial(n-1);

}

n!= n*(n-1)! if n>0

 1 if n==0

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

n=4

Returns 4*factorial(3)

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

n=4

Returns 4*factorial(3)
n=3

Returns 3*factorial(2)

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

n=4

Returns 4*factorial(3)
n=3

Returns 3*factorial(2)
n=2

Returns 2*factorial(1)

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

n=4

Returns 4*factorial(3)
n=3

Returns 3*factorial(2)
n=2

Returns 2*factorial(1)
n=1

Returns 1*factorial(0)

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

n=4

Returns 4*factorial(3)
n=3

Returns 3*factorial(2)
n=2

Returns 2*factorial(1)
n=1

Returns 1*factorial(0)
n=0

Returns 1

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

n=4

Returns 4*factorial(3)
n=3

Returns 3*factorial(2)
n=2

Returns 2*factorial(1)
n=1

Returns 1*factorial(0)
1

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

n=4

Returns 4*factorial(3)
n=3

Returns 3*factorial(2)
n=2

Returns 2*factorial(1)
1

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

n=4

Returns 4*factorial(3)
n=3

Returns 3*factorial(2)
2

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

n=4

Returns 4*factorial(3)
6

factorial(4);

factorial(4)

public int factorial(int

n){

 if (n==0)

 return 1;

 else

 return

n*factorial(n-

1);

}

24

Chapter 7: Recursion 26

Recursive Definitions: Greatest

Common Divisor
Definition of gcd(m, n), for integers m > n > 0:
• gcd(m, n) = n, if n divides m evenly
• gcd(m, n) = gcd(n, m % n), otherwise

public static int gcd (int m, int n) {

 if (m < n)

 return gcd(n, m);

 else if (m % n == 0) // could check n>0

 return n;

 else

 return gcd(n, m % n);

}

Example: Binary Search

One subproblem, half as large

Equation: T(1)  b

 T(n)  T(n/2) + c for n>1

Solution:

7 12 30 35 75 83 87 90 97 99

T(n)  T(n/2) + c

  T(n/4) + c + c

  T(n/8) + c + c + c

  T(n/2k) + kc

  T(1) + c log n where k = log n

  b + c log n = O(log n)

Example: MergeSort

Split array in half, sort each half, merge together

– 2 subproblems, each half as large

– linear amount of work to combine

 T(1)  b

 T(n)  2T(n/2) + cn for n>1

T(n)  2T(n/2)+cn  2(2(T(n/4)+cn/2)+cn

= 4T(n/4) +cn +cn  4(2(T(n/8)+c(n/4))+cn+cn

= 8T(n/8)+cn+cn+cn  2kT(n/2k)+kcn

 2kT(1) + cn log n where k = log n

 = O(n log n)

Chapter 7: Recursion 29

Recursion Versus Iteration

• Recursion and iteration are similar

• Iteration:

– Loop repetition test determines whether to exit

• Recursion:

– Condition tests for a base case

• Can always write iterative solution to a problem solved

recursively, but:

• Recursive code often simpler than iterative

– Thus easier to write, read, and debug

Searching

Definition

• Searching is the process of
finding an item with
specified properties from a
collection of items.

• The items may be stored as

– Records in a database

– Simple data elements in arrays

– Text in files

– Nodes in trees

Etc

Purpose of Searching

• Computers store a lot of
information.

• To retrieve information
proficiently searching
algorithms are used.

Types of searching

• Unordered Linear Serarch

• Sorted/Ordered Linear Search

• Binary Search

Unordered Linear Search

• Let us assume we are given an array where
the order of the elements is not known.

• Means the elements of the array are not
sorted.

• Here we have to scan the complete array and
see if the element is there in the given list or
not

Algorithm
Int unORderedLinearSearch(int A[], int
data)

 For(int i=0; i<n;i++){

 If(A[i]==data)

 return i;

 }

 return -1;

}

Example

Input : A[] = {10, 20, 80, 30, 60, 50,

 110, 100, 130, 170}

 x = 110;

Output : 6

Element x is present at index 6

Input : arr[] = {10, 20, 80, 30, 60, 50,

 110, 100, 130, 170}

 x = 175;

Output : -1

Element x is not present in A[].

Complexity

• Time Complexity: O(n)

• In the worst case we need to scan
the complete array.

• Space Complexity: O(1)

Sorted/Ordered Linear Search
• If the elements of the array are already

sorted, we don’t have to scan the complete
array to see if the element is there in the
given array or not.

• In the algorithm below, if the value at A[i] is
greater than the data to be searched, then
we just return -1 without searching the
remaining array.

Algorithm

Int orderedLinearSearch(int A[], int n, int data){
 for(int i=0; i<n ; i++){
 if(A[i]==data)
 return i;
 else if(A[i] > data)
 return -1;
 }
 return -1;
}

Example

Complexity

• Time Complexity:O(n), in worst we scan the
complete array.

• Space Complexity: O(1).

Binary Search

• Let us consider the problem of searching a word
in a dictionary.

• It works on the principle of divide and conquer
technique.

• We go to some approximate page(say, middle
page) and start searching from that point.

• If the name that we are searching is the same
then the search is complete.

• If the page is before the selected pages then
apply the same process for the first half;
otherwise apply the same to the second half.

• Binary search also works in the same way.

• The algorithm applying such a strategy is
referred to as binary search algorithm

 Mid = low + (high-low)/2

 or

 Mid= (low+high)/2

Algorithm Method 1
• //Iterative Binary Search Algorithm
int binarySearchIterative(int A[i], int n, int data)
 int low=0;
 while (low<=high){
 mid=low + (high-low)/2; // To avoid overflow
 if(A[mid] == data)
 return mid;
 else if (A[mid] < data)
 low = mid + 1;
 else high = mid – 1;
 }
 return -1;
}

Algorithm Method 2

• //Recursive Binary Search Algorithm
int binarySearchRecursive(int A[], low,int igh, int data)
 int mid = low+(high-low)/2 // To avoid overflow
 if((low>high)
 return -1;
 if(A[mid] == data)
 return mid;
 else if(A[mid] < data)
 return BinarySearchRecursive(A, mid+1,
 high,data);
 else return BinarySearchRecursive(A,low, mid-1, data);
 return -1;
}

Example

Advantages & Disadvantages

• Advantages:
– Binary search is much faster than linear search
– It eliminates half of the list from further searching by

using the result of each comparison.
– Time Complexity of Binary Search Algorithm is

O(log2n).
• Here, n is the number of elements in the sorted linear array.

– Linear search takes, on average N/2 comparisons
(where N is the number of elements in the array), and
worst case N comparisons.

– It indicates whether the element being searched is
before or after the current position in the list.

• Disadvantages

– It works only on lists that are sorted and kept
sorted.

– It works only on element types for which there
exists a less-than(<) relationship.

– It employs recursive approach which requires
more stack space.

Selection Sort

• Selection sort is an in-place sorting algorithm.
Selection sort works well for small files.

• It is for sorting the files with very large values
used and small keys.

• This is because selection is made based on
keys and swaps are made only when
required.

Advantages

• Easy to implement

• In-place sort (requires no
additional storage space)

Disadvantages

•Doesn’t scale well: O(n2)

Algorithm

• 1. Find the minimum value in the list

• 2. Swap it with the value in the current
position

• 3. Repeat this process for all the elements
until the entire array is sorted

• This algorithm is called selection sort since it
repeatedly selects the smallest element.

Implementation

Performance

Sorting

Definition

• Sorting is an algorithm that
arranges the elements of a list in
a certain order [either ascending
or descending].

• The output is a permutation or
reordering of the input.

Why is Sorting Necessary?

• Sorting can significantly reduce
the complexity of a problem.

• Used for database algorithms
and searches.

Classifications

• sorting algorithms are
classified into

–Internal Sort

–External Sort

Internal Sort

• Sort algorithms use main memory exclusively during
the sort are called internal sorting algorithms.

• This kind of algorithm assumes high-speed random
access to all memory.

• Bubble Sort.

• Insertion Sort.

• Quick Sort.

• Heap Sort.

• Radix Sort.

• Selection sort.

External Sort

• Sorting algorithms that use external memory,
such as tape or disk, during the sort come
under this category.

• Distribution sorting,

–which resembles quicksort,

• external merge sort,

–which resembles merge sort.

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort

Classification of Sorting Algorithms

• Sorting algorithms are generally categorized
based on the following parameters.

• By Number of Comparisons

• By Number of Swaps

• By Memory Usage

• By Recursion

• By Stability

• By Adaptability

Bubble Sort

• Bubble sort is the simplest sorting algorithm.

• It works by iterating the input array from the first element to the last,
comparing each pair of elements and swapping them if needed.

• Bubble sort continues its iterations until no more swaps are needed.

• The algorithm gets its name from the way smaller elements “bubble”
to the top of the list.

• The only significant advantage is that it can detect whether the input
list is already sorted or not.

Implementation

• Algorithm takes O(n2) (even in best case).

• We can improve it by using one extra flag.

• No more swaps indicate the completion of
sorting. If the list is already sorted, we can use
this flag to skip the remaining passes.

Performance

• This modified version improves the best case
of bubble sort to O(n).

• Worst case complexity : O(n2)

• Best case complexity (Improved version) : O(n)

• Average case complexity (Basic version) :
O(n2)

• Worst case space complexity : O(1) auxiliary

