
UNIT IV   CSA PVP14 Page 1 
 

 

COMPUTER ARITHMETIC  

The four basic arithmetic operations in computers are: Addition, Subtraction, Multiplications, and Division.  

 Arithmetic processor is part of processor unit and it executes arithmetic operations.  

 Arithmetic instructions specify data type binary or decimal , fixed point or floating point  

 Fixed point numbers represents integers while floating point numbers represent fractional numbers.  

 Negative numbers may be in signed magnitude or signed complement representation.  

o Fixed point binary signed magnitude  

o Fixed point binary 2’s complement  

o Floating point binary  

o Floating point BCD  

Addition and Subtraction 

1. Signed magnitude  

 Is familiar as used in every day arithmetic calculations  

 We designate magnitudes of two numbers as A and B. when those sign numbers are added we have eight different conditions depending 

on the sign bits and operations performed. Next table shows those conditions and other columns shows operations performed.  

 

 

Addition (Subtraction) Algorithm will be as  

o When A and B have identical (different) signs, add the two magnitudes and attaché sign of A to result  

o When signs of A and B are different (same), subtract smaller number from larger number. Choose sign of result as sign of A if A>B, or 

complement of sign of A if A<B.  

o If two magnitudes are equal, subtract B from A and make sign of result positive.  

Hardware Implementation  

 The two numbers are stored in registers A and B and their signs in flip-flops As and Bs. Result is transferred to A register with its sign  

 Next figure the hardware of signed magnitude addition-subtraction. Consists of registers A and B, sign bits As and Bs  

 Complementer can pass value of B or invert of B according to value of M (implemented with EX-OR).  

 AVF holds overflow bit when A and B are added.  

 The addition of A and B will be through parallel adder.  

  
 

 

 



UNIT IV   CSA PVP14 Page 2 
 

 

 When M=0, B is transferred to adder with A and output in A = A + B. while M=1 complement of B plus carry=1 is transferred to adder 

with A and output A = A –  

 

The algorithm is shown in next figure  

o The two signs As and Bs are compared by EX-OR them. If result is 0 then As = Bs and if result is 1 the As ≠ Bs.  

o For add operations if have same sign bits the magnitude must be added. For subtract operations different sign bits means magnitudes be 

added as well.  

o E bit is carry bit after addition and moves to AVE overflow bit only at this state.  

o If sign bits are different in add operations or the same in subtract operations the two magnitudes will be subtracted A – B. No overflow can 

occur here.  

o After subtract if E=1 this means A>B and if E=0 then A<B. then here it is necessary to get 2’s complement of A (by invert A then add 1) 

and sign of A is inverted only in this case.  

o Final result will be in A and its sign in As.  

 

 

Signed 2’s complement  
 

 The left most bit in 2’s complement represented binary number is the sign bit. If 0 the number is positive and if 1 then number is negative. 

If sign bit is 1 the entire number is represented in 2’s complement.  

 The addition of two numbers represented in 2’s complement is carried out by normal binary addition with carry discarded.  

 The subtraction is carried out by taking 2’s complement (B) of subtrahend and adding it to minuend (A).  

 Overflow can be detected by inspecting last 2 carries out of addition by EX-OR them. If different then overflow is detected.  

 For addition simply implement add then see overflow. For subtract add 2’s complement of B to A and watch overflow since the A and –B 

could be of same sign.  

 
 

Multiplication Algorithms  

 The multiplication of two numbers in signed magnitude representation is carried out by successive shift and adds.  

 Look at successive bits of multiplier (least significant bit first), if bit=1 multiplicand is copied else if bit=0, zero is copied down shifted 

one bit to left from previous copies. Finally all numbers are added and their sum forms the product.  

 

Hardware Implementation 

 



UNIT IV   CSA PVP14 Page 3 
 

 

It is necessary to supply adder for summation two binary numbers and successively accumulate the partial products in a register.  

 Instead of shifting multiplicand to the left the partial product is shifted to the right.  

 When corresponding bit of multiplier is 0 no need to add zeros to partial product, just do nothing.  

 

 Hardware for multiplication consist of complementer and parallel adder, Registers A and B with their sign bits As and Bs, multiplier Q 

register, and its sign in Qs. SC is set to number of bits in multiplier and when reaches zero it means partial addition has finished and product 

is ready in A.  

 

 Multiplicand in A register while multiplier in Q register initially. The sum of A and B is the partial product in EA. A and Q registers are 

shifted together giving rise to new bit from Q in Qn bit which tells us if that bit is 0 or 1.  

Algorithm  

 Signs of Qs and Bs are compared then As and Qs are set as sign of the product. A and E bit are cleared with SC set to number of bits in Q  

 Low order bit in Q is tested. If Qn=1 then B is added to A. if Qn=0 then nothing is done.  

 Registers EAQ are shifted to the right.  

 SC is decremented.  

 Process stops when SC=0.  

 Note that product is occupying A and Q registers and after each shift it replaces A and Q registers.  

 

 Booth Multiplication Algorithm  
 Gives procedure for multiplying binary integers in signed 2’s complement representation.  

 It operates in fact that string of 0’s in multiplier requires no addition but only shifting. And strings of 1’s in multiplier  needs addition by 

strings  

 As with all multiplication schemes. Booth algorithm requires testing of multiplier bits and shifting of partial products. Before shifting, the 

multiplicand may be added to partial product, subtracted from partial product, or left unchanged.  

o Multiplicand is subtracted from partial product when first least significant 1 of string of 1’s in multiplier is encountered. (10)  

o Multiplicand is added to partial product when encountering first 0 and if there were a previous 1 in a string of 0’s in multiplier. (01)  

o The partial product does not change when multiplier bits are identical. (00 or 11)  

The algorithm works for positive or negative multipliers in 2’s complement representation.  

 

 



UNIT IV   CSA PVP14 Page 4 
 

 

The hardware implementation requires register configuration shown in next figure.  

 We have BR register to hold multiplicand, QR holding multiplier, A register holding partial product with QR, and Qn+1 flip flop to 

facilitate double bi inspection  

 

A numerical example of Booth algorithm is shown in next table for n=5. It shows steps of multiplying (-9) X (-13) = +117.  

 

Array Multiplier  

 The multiplication of 2 binary numbers can be done in one micro operation by means of combinational circuits that forms product bits all 

at once.  

 This is a fast way to multiply numbers since it takes only the propagation delay.  

 Next figure shows an example of multiplying 2 numbers each of 2 bits and a hardware implementation  

A = a1a0:  Multiplier, B = b1b0:  Multiplicand 

C = B * A = c3c2c1c0 

        b1       b0  

       a1       a0 

      ---------------------- 

      a0b1   a0b0 

                       a1b1   a1b0 

         -------------------------------------- 

                                       c3         c2       c1      c0 

 

 

 

AND gates used to implement product of 2 bits.  

 The first partial product formed by using 2 AND gates. The second partial product is formed by using another 2 AND gates but shifted 

one position to the left  

 The 2 partial products are added using 2 Half Adder circuits.  

 For j bits by k bits multiplications, we need j X k AND gates and (j-1) k-bit adder circuits to get (j + k) bits product.  

 For 4 bits by 3 bits multiplication, next figure shows its implementation.  

 Since k=4 and j=3 we have 12 AND gates and 2 4-bit Adders to produce a product of 7 bits  



UNIT IV   CSA PVP14 Page 5 
 

 

Memory Hierarchy 

The memory unit that communicates with directly with CPU is called main memory.  

o Not enough storage space.  

o SRAM or DRAM  

o Contains programs and data currently needed are stored here  

 Devices that provide backup storage are called auxiliary memory.  

o Most common are magnetic disks and tape drives.  

o Used to store system programs, large data files, backup data  

o Not urgently needed data are stored here.  

 Total memory capacity of a computer can be visualized as a hierarchy of components.  

o Ranges from 1- slow but high capacity to 2- relatively faster and less capacitive main memory to 3- smaller and fast cache memory.  

o At bottom of hierarchy you can find slow magnetic tapes(removable files)  

o at middle you can find magnetic disks (backup storage)  

o then main memory which can communicate with CPU and auxiliary memories.  

o At top of pyramid resides the cache memory. Used to increase speed of processing. Compensate of speed difference between CPU and 

main memory. Usually in cache segments of programs and data frequently  accessed are stored to benefit from high speed access by CPU 

not found in main memory  

 

 
 

 
Main Memory  

 Main memory is central storage unit in computers  

 Fast and relatively large type of memory and used to store programs and data used in program execution  

 RAM: integrated circuit chips (Static or Dynamic)  

o SRAM consists of flip flops as storage media. Stored data remains valid as long as power is applied to the unit  

o DRAM stores data as form of electric charges in small capacitors. Capacitors are provided by CMOS transistors. Needs refreshing 

periodically as charges on small capacitor discharge soon (need electronic control unit for that).  

o DRAM compared to SRAM offer reduced power consumption and larger capacity. But SRAM are faster.  

 ROM is different type of main memories. Used to store programs and data that does not change at all (programs, tables, etc.)  

o Used ROMs for storing bootstrap loaders  

ROMs are used to startup any computer  

ROM and RAM are available in different sizes. And usually we have to combine many chips to increase size.  

 RAM chips consist of a number of address pins, bidirectional data pins, and some control pins.  

o Bidirectional means data can be initiated from memory to the outside or from outside to memory chip. o Next figure shows 128 words of 8 

bits per word RAM chip. This requires 7 address bits and 8 bidirectional data bits.  

o Next figure shows a RAM chip that have 2 chip enables CS1=1 and CS2#=0. Those called chip select controls and they enable the chip to 

function if selected.  

o Another 2 controls RD and WR. When R=1 then chip in a read status such that it provided data into data pins from location specified by 

address. If WR=1 then it is in write status and it accepts data from data bits into the chip’s storage location specified by address  

 

 



UNIT IV   CSA PVP14 Page 6 
 

 
 

 

ROM chips are constructed the same way. It has address bits, one direction data bits, CS control pin and/or RD control pin.  

o Next figure shows 512 words ROM chip each with 8 data bits. See how address pins and storage locations are related.  

 

Internal binary cells of ROM occupy much less space than RAM.  

 

 

Memory Address Map and Connection to CPU  

 Memory Address Map is “address space assignment to each memory chip”.  

 Assume computer system with 512 bytes of RAM and 512 bytes of ROM as shown in next figure. The memory address map is shown in  

next table.  

 

RAM chips are 128 words each so they need 7 address lines.  

o ROM chips are 512 words each so they need 9 address lines.  

o For RAM selection A10 is always 0 whereas for ROM selection A10 is always 1.  

o Memory chips are connected to CPU through address and data busses. RAM chips stores 128 by 4 = 512 bytes. ROM chip stores 512 

bytes alone.  

o A10 selects ROM chip if it is 1. And it selects all RAM chips if it is 0.  

o RD and WR control pins are connected to RD and WR pins in corresponding ROM and RAM chips to initiate read or write operation from 

CPU.  

o Address range from 0 to 511 is assigned for RAM chips while address range from 512 to 1023 is assigned to ROM chip 



UNIT IV   CSA PVP14 Page 7 
 

 

Auxiliary Memory  
 Common used secondary memory is magnetic disks and magnetic tapes.  

 Other devices (magnetic drums, bubble memory, CD, DVD, flash disks, etc.)  

 The important characteristics of those storage devices are  

o Access mode  

o Access time  

o Transfer rate  

o Capacity  

o Cost.  

 Access time  

o Average time needed to reach storage location and obtain contents.  

 Access time = seek time + transfer time 

 Seek time:  

o Transfer time: time required to transfer data to-from device.  

 Secondary storage devices are organized into records (blocks). Reading or writing is always done with entire record.  

 Transfer rate  

o The number of characters or words the device can transfer in one second.  

 

MAGNETIC DISKS  

 Circular plate constructed of metal or plastic coated with magnetized material.  

 Both sides of disks are used and severatemsl sysl disks may be stacked with read-write heads available for each surface.  

 All disks rotate together at high speed  

 Bits are stored in tracks which are concentric circles  

 Tracks are divided into sections called sectors  

 

 Some disk systems use single read-write head moveable to different tracks using mechanical assembly  

 Others use multiple read-write heads positioned on each track (faster , more expensive).  

 

 Addressing used to specify disk number, surface, track number, and sector within track.  

 After head positioned at track, must wait to synchronize with sector  

 Then reading data will start as same speed of rotation  

 

 Hard disks are permanently attached to unit and cannot move. Floppy disks are removable ones. With 2 sizes 5.25 and 3.5  

  
 

Magnetic tapes 

Strip of plastic coated with magnetic recording material.  

Bits are recorded as magnetic spots along several parallel tracks(7 to 9 tracks to form character with parity).  

Read-write heads are positioned on each track.  

Magnetic tape units can be started stopped, forward moved, or reverse moved or rewound.  

Data are recorded in records (number of characters) followed by gaps between record for synchronization.  



UNIT IV   CSA PVP14 Page 8 
 

At start and end of each record there is ID bit patterns.  

Records are identified by reading ID bit patterns.  

 

Associative Memory  
 

 Accessed by the content of the data rather than by an address. Also called Content Addressable Memory (CAM).  

 When word is written to CAM, no address is needed; next available unused storage location is located. When word is read from CAM, the 

content of word or part of it is specified, the memory locates all words which give match and marks them for reading.  

 Associative memories are expensive and used for application where time search is critical.  

HARDWARE ORANIZATION 

• Consists of memory array of m words each of n bits, argument register A and key register K each of n bits.  

• Match register M has m bits, one for each memory word  

• Each word of memory is compared in parallel with content of argument register and set corresponding bit in match register.  

•  Those bits set in match register indicate their words has match.  

• Key register provides mask to select particular bits in argument word to be included in match or not.  

• 1 means corresponding bit in argument register is in match and 0 means not.  

  

 

MATCHING LOGIC  

 The match logic for each word can be derived from comparison algorithm of two binary numbers.  

1. K is neglected  

Word i is equal to argument A if Aj = Fij for j=1 ,2, 3, …,n  

xj = Aj Fij + A’j F’ij  

for word i to be equal to argument A we must have all xi variables equal 1. The Boolean function for that will be  

Mi = x1 x2 x3 x4 ……. xn  

2. K is included  

Requirement will be  

xi + K’j = xi if Kj=1  

= 1 if Kj=0  

Then match logic will be  

Mi = (x1 + K’1) (x2 + K’2) (x3 + K’3) ….. (xn + K’n)  



UNIT IV   CSA PVP14 Page 9 
 

The function now can be expressed in detail as  

Mi = Π(Aj Fij + A’jF’ij + K’j) for j=1 to n 

 

 Cache Memory  
 Analysis has shown that references to memory at given interval of time is confined within few localized areas in memory. (Locality of 

Reference)  

 

 Programs has loops and repeated subroutine calls encountered frequently. So computer repeatedly refers to set of instructions in memory 

of the loop  

 

 Same applies for subroutine; every time a subroutine is called the instructions of teh subroutine will be executed.  

 

 Memory reference of data also tend to be localized . lookup tables data repeatedly refer to same area in memory.  

 

"Temporal Locality"  

 The information which will be used in near future is likely to be in use already( e.g. Reuse of information in loops)  

"Spatial Locality"  

 If a word is accessed, adjacent(near) words are likely accessed soon  

o (e.g. Related data items (arrays) are usually stored together  

instructions are executed sequentially  

 
"Cache Memory"  

 The property of Locality of Reference makes the Cache memory systems work  

 

 Cache is a fast small capacity memory that should hold those information which are most likely to be accessed.  

 

 Then the average memory access time can be reduced dramatically  

 

 Placed between processor and main memory  

 

 Have access time less than main memory access time by a factor of (5 – 10)  

 

"Cach and memory Access"  

 All the memory accesses are directed first to Cache. If the word is in Cache; Access cache to provide it to CPU.  

 

 If the word is not in Cache; bring a block (or a line) including that word to replace a block now in Cache. Block varies between (1 – 16 

words)  

 

"Cache Memory system Performance"  

Hit Ratio : "% of memory accesses satisfied by Cache memory system" 

If processor searches for a word in cache and finds it then we call this state as "hit"; in the same way, if the word is not found in cache then 

must it be pulled from main memory and placed in cache, then we call this state as "miss" ,Te = Tc + (1 -h) Tm  

Where: Te: Effective memory access time in Cache memory system ,Tc: Cache access time Tm: Main memory access time  

Example: Assume a cached processor system with cache access time of Tc = 0.4 us, and a memory access time of Tm = 1.2us, and cache hit 

ratio of h = 0.85%. Then get the effective access time? Te = 0.4 + (1 -0.85) * 1.2 = 0.58 us  

"Mapping Function: Associative Mapping"  

 Any block location in Cache can store any block in memory  

o Most flexible  

 

 Mapping Table is implemented in an associative memory  

o Fast, very Expensive  

 

o Stores both address and the content of the memory word.  

 



UNIT IV   CSA PVP14 Page 10 
 

 Cache controller search for the existence of the address part. If found then content is accessed; otherwise the main memory is accessed 

and the address-data pair is placed in next available place in cache.  

 

If cache is full then a decision must be taken to which line in cache to be replaced by the new content (need a replacement algorithm).  

 

"Mapping Function: Direct Mapping"  

 Associative memories are expensive compared to RAMs  

 

 Each memory block has only one place to load in Cache  

 

 Mapping Table is made of RAM instead of CAM  

 

 n-bit memory address consists of 2 parts; ( k ) bits of Index field and ( n-k ) bits of Tag field  

 

 n-bit addresses are used to access main memory and k-bit Index is used to access the Cache. Tag part of the address is stored with the data 

in cache line that it represent. 

location 00000 will be placed in cache in location 000. And its content 1220 will be placed in cache at that address  

 content of 02777 which is 6710 will be placed in address 777 in cache.  

the next main memory addresses 00000, 01000, and 02000 when referenced will occupy the same cache line address of 000. But they have 

different TAG parts.  

  

 

Direct mapping cache organisation 

 

 

Operation of Direct mapped caches  

 address is generated from CPU with 2 parts INDEX and TAG  

 cache is accessed using INDEX; the required word is accessed and TAG if compared with cache TAG  

 IF matches then it is a "Hit"  

o Data is pulled from this line to processor  

 If not a match then it is a "Miss"  

o The required address content is read into cache. ?It may replace an old content with the same INDEX but not the TAG  

o A copy is presented to the processor  

Example: block size = 8 bytes  

 Each line in cache stores TAG and DATA  

 Data will be content of 8 bytes addressed sequentially in main memory  

 We have 64 cache lines  

 TAG stored with data ion cache line is the remaining address of memory location after the 3 bits word and 6 bits block  

 

Disadvantage 

Hit ratio may drop if 2 or more address words whose address has the same INDEX but different TAG are accessed repeatedly.  

 

 2 main memory address can have the same index part but different tag part will occupy the same cache line  



UNIT IV   CSA PVP14 Page 11 
 

 

Cache Write policies  

Write Through  

 Memory is always updated  

 When writing into memory  

o If Hit, then both cache and memory is written in parallel  

o If Miss, then memory is written  

o For a read miss, missing block may be overloaded onto a cache block  

 Slow as memory is always accessed  

 

Write-Back (Copy-Back)  

 When writing into memory  

o If Hit, only Cache is written  

o If Miss, missing block is brought to cache and write into Cache  

 

 For a read miss, replaced block must be written back to the memory. And this is the only time the block is updated.  

 Memory is not up-to-date, i.e., the same item in cache and memory may have different value  

Reference 

1.‘Computer System Architecture’, Morris M. Mano, 3rd edition,Prentice Hall India. 

2. Computer Organization and Achitecture, William Stallings ,8th edition,PHI  

3. Computer Organization, Carl Hamachar, Vranesic, McGraw Hill. 

 

 


