
Analyzing the Data with Hadoop

To take advantage of the parallel processing that Hadoop provides, we need to express our

query as a MapReduce job.Map and Reduce.

MapReduce works by breaking the processing into two phases: the map phase and the reduce

phase. Each phase has key-value pairs as input and output, the types of which may be chosen

by the programmer. The programmer also specifies two functions: the map function and the

reduce function.

The input to our map phase is the raw NCDC data.

To visualize the way the map works, consider the following sample lines of input data (some

unused columns have been dropped to fit the page, indicated by ellipses):

0067011990999991950051507004...9999999N9+00001+99999999999...

0043011990999991950051512004...9999999N9+00221+99999999999...

0043011990999991950051518004...9999999N9-00111+99999999999...

0043012650999991949032412004...0500001N9+01111+99999999999...

0043012650999991949032418004...0500001N9+00781+99999999999...

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)

(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)

(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)

(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)

(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)

The keys are the line offsets within the file, which we ignore in our map function.The map

function merely extracts the year and the air temperature (indicated in bold text), and emits

them as its output (the temperature values have been interpreted asintegers):

(1950, 0)

(1950, 22)

(1950, −11)

(1949, 111)

(1949, 78)

The output from the map function is processed by the MapReduce framework before being

sent to the reduce function. This processing sorts and groups the key-value pairs by key. So,

continuing the example, our reduce function sees the following input:

(1949, [111, 78])

(1950, [0, 22, −11])

Each year appears with a list of all its air temperature readings. All the reduce function has to

do now is iterate through the list and pick up the maximum reading:

(1949, 111)

(1950, 22)

This is the final output: the maximum global temperature recorded in each year.

Java MapReduce:Example 2-3. Mapper for maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper

extends Mapper<LongWritable, Text, Text, IntWritable>

{

 private static final int MISSING = 9999;

 @Override

 public void map(LongWritable key, Text value, Context context)

 throws IOException, InterruptedException

 {

 String line = value.toString();

 String year = line.substring(15, 19);

 int airTemperature = Integer.parseInt(line.substring(87, 92));

 context.write(new Text(year), new IntWritable(airTemperature));

 }

}

Example 2-4. Reducer for maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer

extends Reducer<Text, IntWritable, Text, IntWritable>

{

 @Override

 public void reduce(Text key, Iterable<IntWritable> values,Context context)

 throws IOException, InterruptedException

 {

 int maxValue = Integer.MIN_VALUE;

 for (IntWritable value : values)

 {

 maxValue = Math.max(maxValue, value.get());

 }

 context.write(key, new IntWritable(maxValue));

 }

}

The third piece of code runs the MapReduce job

Example 2-5. Application to find the maximum temperature in the weather dataset

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature

{

 public static void main(String[] args) throws Exception {

 if (args.length != 2) {

 System.err.println("Usage: MaxTemperature <input path> <output

 path>");

 System.exit(-1);

 }

 Job job = new Job();

 job.setJarByClass(MaxTemperature.class);

 job.setJobName("Max temperature");

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setMapperClass(MaxTemperatureMapper.class);

 job.setReducerClass(MaxTemperatureReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

Analyzing the Data with Unix Tools:

Example 2-2. A program for finding the maximum recorded temperature by year from

NCDC weather

records

#!/usr/bin/env bash

for year in all/*

do

 echo -ne `basename $year .gz`"\t"

 gunzip -c $year | \

 awk '{ temp = substr($0, 88, 5) + 0;

 q = substr($0, 93, 1);

 if (temp !=9999 && q ~ /[01459]/ && temp > max) max = temp }

 END { print max }'

done

The script loops through the compressed year files, first printing the year, and then processing

each file using awk. The awk script extracts two fields from the data: the air temperature and

the quality code. The air temperature value is turned into an integer by adding 0. Next, a test

is applied to see if the temperature is valid (the value 9999 signifies a missing value in the

NCDC dataset) and if the quality code indicates that the reading is not suspect or erroneous. If

the reading is OK, the value is compared with the maximum value seen so far, which is

updated if a new maximum is found. The END block is executed after all the lines in the file

have been processed, and it prints the maximum value.

Here is the beginning of a run:

% ./max_temperature.sh

1901 317

1902 244

1903 289

1904 256

1905 283

Scaling Out

For simplicity, the examples so far have used files on the local filesystem. However, to scale

out, we need to store the data in a distributed filesystem, typically HDFS , to allow Hadoop to

move the MapReduce computation to each machine hosting a part of the data. Let’s see how

this works.

Data Flow

First, some terminology. A MapReduce job is a unit of work that the client wants to be

performed: it consists of the input data, the MapReduce program, and configuration

information.

 Hadoop runs the job by dividing it into tasks, of which there are two types: map tasks and

reduce tasks.

There are two types of nodes that control the job execution process: a jobtracker and a

number of tasktrackers.

The jobtracker coordinates all the jobs run on the system by scheduling tasks to run on

tasktrackers. Tasktrackers run tasks and send progress reports to the jobtracker.

Hadoop divides the input to a MapReduce job into fixed-size pieces called input splits, or just

splits. Hadoop creates one map task for each split.

For most jobs, a good split size tends to be the size of an HDFS block, 64 MB by default,

although this can be changed for the cluster.

So if we are processing the splits in parallel, the processing is better load-balanced if the

splits are small.

Hadoop does its best to run the map task on a node where the input data resides in HDFS.

This is called the data locality optimization.Sometimes, however, all three nodes hosting the

HDFS block replicas for a map task’s input split are running other map tasks so the job

scheduler will look for a free map slot on a node in the same rack as one of the blocks. Very

occasionally even this is not possible, so an off-rack node is used, which results in an inter-

rack network transfer.

It should now be clear why the optimal split size is the same as the block size. If the split

spanned two blocks, it would be unlikely that any HDFS node stored both blocks, so some of

the split would have to be transferred across the network to the node running the map task,

which is clearly less efficient.

Reduce tasks don’t have the advantage of data locality—the input to a single reduce task is

normally the output from all mappers. In the present example, we have a single reduce task

that is fed by all of the map tasks. Therefore, the sorted map outputs have to be transferred

across the network to the node where the reduce task is running, where they are merged and

then passed to the user-defined reduce function. The output of the reduce is normally stored

in HDFS for reliability.

Combiner Functions:

Combiner Functions Many MapReduce jobs are limited by the bandwidth available on the cluster, so

it pays to minimize the data transferred between map and reduce tasks. Hadoop allows the user to

specify a combiner function to be run on the map output—the combiner function’s output forms the

input to the reduce function.

Since the combiner function is an optimization, Hadoop does not provide a guarantee of how many

times it will call it for a particular map output record, if at all. In other words, calling the combiner

function zero, one, or many times should produce the same output from the reducer.

The contract for the combiner function constrains the type of function that may be used. This is best

illustrated with an example. Suppose that for the maximum temperature example, readings for the

year 1950 were processed by two maps (because they were in different splits). Imagine the first map

produced the output:

 (1950, 0)

 (1950, 20)

 (1950, 10)

And the second produced:

 (1950, 25)

 (1950, 15)

The reduce function would be called with a list of all the values:

 (1950, [0, 20, 10, 25, 15])

with output:

 (1950, 25)

since 25 is the maximum value in the list. We could use a combiner function that, just

like the reduce function, finds the maximum temperature for each map output. The

reduce would then be called with:

 (1950, [20, 25])

and the reduce would produce the same output as before. More succinctly, we may

express the function calls on the temperature values in this case as follows:

 max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25

The old and the new Java MapReduce APIs:

There are several notable differences between the two APIs:

 The new API favors abstract classes over interfaces. For example, the Mapper and

Reducer interfaces in the old API are abstract classes in the new API.

 The new API is in the org.apache.hadoop.mapreduce package (and subpackages).The

old API can still be found in org.apache.hadoop.mapred.

 The new Context,essentially unifies the role of the JobConf, the OutputCollector, and

the Reporter from the old API.

 In addition, the new API allows both mappers and reducers to control the execution

flow by overriding the run() method.

 Output files are named slightly differently: in the old API both map and reduce

outputs are named part-nnnnn, while in the new API map outputs are named part-m-

nnnnn, and reduce outputs are named part-r-nnnnn (where nnnnn is an integer

designating the part number, starting from zero).

 In the new API the reduce() method passes values as a java.lang.Iterable, rather than a

java.lang.Iterator.

The Configuration API :

Components in Hadoop are configured using Hadoop’s own configuration API. An instance of the

Configuration class (found in the org.apache.hadoop.conf package) represents a collection of

configuration properties and their values. Each property is named by a String, and the type of a value

may be one of several types, including Java primitives such as boolean, int, long, float, and other

useful types such as String, Class, java.io.File, and collections of Strings. Configurations read their

properties from resources—XML files with a simple structure

for defining name-value pairs. See Example 5-1.

Example 5-1. A simple configuration file, configuration-1.xml
<?xml version="1.0"?>
<configuration>
 <property>
 <name>color</name>
 <value>yellow</value>
 <description>Color</description>
 </property>
 <property>
 <name>size</name>
 <value>10</value>
 <description>Size</description>
 </property>
 <property>
 <name>weight</name>
 <value>heavy</value>
 <final>true</final>
 <description>Weight</description>
 </property>

 <property>
 <name>size-weight</name>
 <value>${size},${weight}</value>
 <description>Size and weight</description>
 </property>
</configuration>
Assuming this configuration file is in a file called configuration-1.xml, we can access its

properties using a piece of code like this:

 Configuration conf = new Configuration();

 conf.addResource("configuration-1.xml");

 assertThat(conf.get("color"), is("yellow"));

 assertThat(conf.getInt("size", 0), is(10));

Combining Resources :

Things get interesting when more than one resource is used to define a configuration. This is used in

Hadoop to separate out the default properties for the system, defined internally in a file called core-

default.xml, from the site-specific overrides, in coresite.xml. The file in Example 5-2 defines the size

and weight properties.

Example 5-2. A second configuration file, configuration-2.xml
<?xml version="1.0"?>
<configuration>
 <property>
 <name>size</name>
 <value>12</value>
 </property>
 <property>
 <name>weight</name>
 <value>light</value>
 </property>
</configuration>

Resources are added to a Configuration in order:

 Configuration conf = new Configuration();

 conf.addResource("configuration-1.xml");

 conf.addResource("configuration-2.xml");

Properties defined in resources that are added later override the earlier definitions. So the size

property takes its value from the second configuration file, configuration-2.xml:

 assertThat(conf.getInt("size", 0), is(12));

However, properties that are marked as final cannot be overridden in later definitions.The weight

property is final in the first configuration file, so the attempt to override it in the second fails, and it

takes the value from the first:

 assertThat(conf.get("weight"), is("heavy"));

Attempting to override final properties usually indicates a configuration error, so this results in a

warning message being logged to aid diagnosis.

Variable Expansion :

Configuration properties can be defined in terms of other properties, or system properties.

CONFIGURING THE DEVELOPMENT ENVIRONMENT:

The first step is to download the version of Hadoop that you plan to use and unpack it on your

development machine (this is described in Appendix A). Then, in your favourite IDE, create a

new project and add all the JAR files from the top level of the unpacked distribution and from

the lib directory to the classpath. You will then be able to compile Java Hadoop programs and

run them in local (standalone) mode within the IDE.

Managing Configuration:

we assume the existence of a directory called conf that contains three configuration files:

hadoop-local.xml, hadoop-localhost.xml, and hadoop-cluster.xml (these are available in the

example code for this book). The hadoop-local.xml file contains the default Hadoop

configuration for the default filesystem and the jobtracker:

<?xml version="1.0"?>

<configuration>

<property>

<name>fs.default.name</name>

<value>file:///</value>

</property>

<property>

<name>mapred.job.tracker</name>

<value>local</value>

</property>

</configuration>

The settings in hadoop-localhost.xml point to a namenode and a jobtracker both running

on localhost:

<?xml version="1.0"?>

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost/</value>

</property>

<property>

<name>mapred.job.tracker</name>

<value>localhost:8021</value>

</property>

</configuration>

Finally, hadoop-cluster.xml contains details of the cluster’s namenode and jobtracker

addresses. In practice, you would name the file after the name of the cluster, rather than

“cluster” as we have here:

<?xml version="1.0"?>

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://namenode/</value>

</property>

<property>

<name>mapred.job.tracker</name>

<value>jobtracker:8021</value>

</property>

</configuration>

GenericOptionsParser, Tool, and ToolRunner :

Hadoop comes with a few helper classes for making it easier to run jobs from the command

line. GenericOptionsParser is a class that interprets common Hadoop command-line options

and sets them on a Configuration object for your application to use as desired. You don’t

usually use GenericOptionsParser directly, as it’s more convenient to implement the Tool

interface and run your application with the ToolRunner, which uses GenericOptionsParser

internally:

public interface Tool extends Configurable

{

 int run(String [] args) throws Exception;

}

Hadoop Streaming

Hadoop provides an API to MapReduce that allows you to write your map and reduce

functions in languages other than Java. Hadoop Streaming uses Unix standard streams as the

interface between Hadoop and your program, so you can use any language that can read

standard input and write to standard output to write your MapReduce program.

Map input data is passed over standard input to your map function, which processes it line by

line and writes lines to standard output. A map output key-value pair is written as a single

tab-delimited line. Input to the reduce function is in the same format—a tab-separated key-

value pair—passed over standard input. The reduce function reads lines from standard input,

which the framework guarantees are sorted by key, and writes its results to standard output.

Ruby

Example 2-8. Map function for maximum temperature in Ruby

#!/usr/bin/env ruby

STDIN.each_line do |line|

 val = line

 year, temp, q = val[15,4], val[87,5], val[92,1]

 puts "#{year}\t#{temp}" if (temp != "+9999" && q =~ /[01459]/)

end

% cat input/ncdc/sample.txt | ch02/src/main/ruby/max_temperature_map.rb

1950 +0000

1950 +0022

1950 -0011

1949 +0111

1949 +0078

#!/usr/bin/env ruby

last_key, max_val = nil, 0

STDIN.each_line do |line|

 key, val = line.split("\t")

 if last_key && last_key != key

 puts "#{last_key}\t#{max_val}"

 last_key, max_val = key, val.to_i

 else

 last_key, max_val = key, [max_val, val.to_i].max

 end

end

puts "#{last_key}\t#{max_val}" if last_key

% cat input/ncdc/sample.txt | ch02/src/main/ruby/max_temperature_map.rb | \

sort | ch02/src/main/ruby/max_temperature_reduce.rb

1949 111

1950 22

Python

Example 2-10. Map function for maximum temperature in Python

#!/usr/bin/env python

import re

import sys

for line in sys.stdin:

 val = line.strip()

 (year, temp, q) = (val[15:19], val[87:92], val[92:93])

 if (temp != "+9999" and re.match("[01459]", q)):

 print "%s\t%s" % (year, temp)

Example 2-11. Reduce function for maximum temperature in Python

#!/usr/bin/env python

import sys

(last_key, max_val) = (None, 0)

for line in sys.stdin:

 (key, val) = line.strip().split("\t")

 if last_key and last_key != key:

 print "%s\t%s" % (last_key, max_val)

 (last_key, max_val) = (key, int(val))

 else:

 (last_key, max_val) = (key, max(max_val, int(val)))

if last_key:

print "%s\t%s" % (last_key, max_val)

% cat input/ncdc/sample.txt | ch02/src/main/python/max_temperature_map.py | \

sort | ch02/src/main/python/max_temperature_reduce.py

1949 111

1950 22

WRITING A UNIT TEST:

The map and reduce functions in MapReduce are easy to test in isolation. There are several

Java mock object frameworks that can help build mocks; here we use Mockito, which is noted

for its clean syntax:

Mapper

The test for the mapper is shown in Example 5-4.

Example 5-4. Unit test for MaxTemperatureMapper

import static org.mockito.Mockito.*;

import java.io.IOException;

import org.apache.hadoop.io.*;

import org.junit.*;

public class MaxTemperatureMapperTest

{

@Test

public void processesValidRecord() throws IOException, InterruptedException

 {

MaxTemperatureMapper mapper = new MaxTemperatureMapper();

Text value = new Text("0043011990999991950051518004+68750+023550FM-12+0382" +

"99999V0203201N00261220001CN9999999N9-00111+99999999999");

 MaxTemperatureMapper.Context context

=mock(MaxTemperatureMapper.Context.class);

mapper.map(null, value, context);

verify(context).write(new Text("1950"), new IntWritable(-11));

}

}

To create a mock Context,we call Mockito’s mock() method (a static import), passing the

class of the type we want to mock.Here we verify that Context’s write() method was called

with a Text object representing the year (1950) and an IntWritable representing the

temperature (−1.1°C).

Example 5-5. First version of a Mapper that passes MaxTemperatureMapperTest

public class MaxTemperatureMapper

extends Mapper<LongWritable, Text, Text, IntWritable>

 {

@Override

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException

{

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature = Integer.parseInt(line.substring(87, 92));

context.write(new Text(year), new IntWritable(airTemperature));

}

}

REDUCER:

The reducer has to find the maximum value for a given key. Here’s a simple test for

this feature:

@Test

public void returnsMaximumIntegerInValues() throws IOException,

InterruptedException

 {

MaxTemperatureReducer reducer = new MaxTemperatureReducer();

Text key = new Text("1950");

List<IntWritable> values = Arrays.asList(new IntWritable(10), new IntWritable(5));

MaxTemperatureReducer.Context context =

mock(MaxTemperatureReducer.Context.class);

reducer.reduce(key, values, context);

verify(context).write(key, new IntWritable(10));

}

Example 5-6. Reducer for maximum temperature example

public class MaxTemperatureReducer

extends Reducer<Text, IntWritable, Text, IntWritable>

{

@Override

public void reduce(Text key, Iterable<IntWritable> values,Context context)

throws IOException, InterruptedException

{

int maxValue = Integer.MIN_VALUE;

for (IntWritable value : values)

{

maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));

}

}

Running a Distributed MapReduce :Running a Distributed MapReduce Job The same

program will run, without alteration, on a full dataset. This is the point of MapReduce: it scales to the

size of your data and the size of your hardware. Here’s one data point: on a 10-node EC2 cluster

running High-CPU Extra Large Instances, the program took six minutes to run.5 We’ll go through the

mechanics of running programs on a cluster in Chapter 5.

Running Locally on Test Data :

Now that we’ve got the mapper and reducer working on controlled inputs, the next step is to write a

job driver and run it on some test data on a development machine. Running a Job in a Local Job

Runner Using the Tool interface introduced earlier in the chapter, it’s easy to write a driver to run our

MapReduce job for finding the maximum temperature by year (see MaxTemperatureDriver in

Example 5-7).

Example 5-7. Application to find the maximum temperature

public class MaxTemperatureDriver extends Configured implements Tool {

 @Override

 public int run(String[] args) throws Exception {

 if (args.length != 2) {

 System.err.printf("Usage: %s [generic options] <input> <output>\n",

 getClass().getSimpleName());

 ToolRunner.printGenericCommandUsage(System.err);

 return -1;

 }

 Job job = new Job(getConf(), "Max temperature");

 job.setJarByClass(getClass());

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setMapperClass(MaxTemperatureMapper.class);

 job.setCombinerClass(MaxTemperatureReducer.class);

 job.setReducerClass(MaxTemperatureReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 return job.waitForCompletion(true) ? 0 : 1;

 }

 public static void main(String[] args) throws Exception {

 int exitCode = ToolRunner.run(new MaxTemperatureDriver(), args);

 System.exit(exitCode);

 }

}

From the command line, we can run the driver by typing:

% hadoop v2.MaxTemperatureDriver -conf conf/hadoop-local.xml \ input/ncdc/micro

output

Testing the Driver

Apart from the flexible configuration options offered by making your application implement Tool,

you also make it more testable because it allows you to inject an arbitrary Configuration. You can

take advantage of this to write a test that uses a local job runner to run a job against known input

data, which checks that the output is as expected.There are two approaches to doing this. The first is

to use the local job runner and run the job against a test file on the local filesystem. The code in

Example 5-10 gives an idea of how to do this.

Example 5-10. A test for MaxTemperatureDriver that uses a local, in-process job runner

 @Test

 public void test() throws Exception {

 Configuration conf = new Configuration();

 conf.set("fs.default.name", "file:///");

 conf.set("mapred.job.tracker", "local");

 Path input = new Path("input/ncdc/micro");

 Path output = new Path("output");

 FileSystem fs = FileSystem.getLocal(conf);

 fs.delete(output, true); // delete old output

 MaxTemperatureDriver driver = new MaxTemperatureDriver();

 driver.setConf(conf);

 int exitCode = driver.run(new String[] {

 input.toString(), output.toString() });

 assertThat(exitCode, is(0));

 checkOutput(conf, output);

 }

Running on a Cluster

Now that we are happy with the program running on a small test dataset, we are ready to try it on

the full dataset on a Hadoop cluster.

Packaging

We don’t need to make any modifications to the program to run on a cluster rather than on a single

machine, but we do need to package the program as a JAR file to send to the cluster. This is

conveniently achieved using Ant, using a task such as this (you can find the complete build file in the

example code):

 <jar destfile="hadoop-examples.jar" basedir="${classes.dir}"/>

Launching a Job

To launch the job, we need to run the driver, specifying the cluster that we want to run the job on

with the -conf option (we could equally have used the -fs and -jt options):

 % hadoop jar hadoop-examples.jar v3.MaxTemperatureDriver -conf conf/hadoop-cluster.xml \

 input/ncdc/all max-temp

The MapReduce WebUI :

 refer 164 page and 165 page.

 You can find the UI at http://jobtracker-host:50030/

