PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous)
KANURU, VIJAYAWADA-520007

I B.Tech – I Sem CSE (DATA SCIENCE) CALCULUS AND LINEAR ALGEBRA

Course Code	20BS1101	Year	I	Semester	I
Course Category	Basic Science	Branch	CSE(Data Science)	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Examination	70	Total Marks	100

Course Outcomes					
Upon su	accessful completion of the course, the student will be able to				
CO1	Understand the basic concepts of calculus and linear algebra	L2			
CO2	Apply the echelon form to obtain the solution of system of linear equation eigenvectors of a matrix.	L2			
CO3	Apply the concepts of calculus to find the series expansion and extreme of a given function, area enclosed by plane curves and volume of the solids.	L3			
CO4	Analyze the solution set of linear system of equations and nature of the quadratic forms.	L4			
CO5	Analyze the behavior of functions using mean value theorems, extreme of the given function and limits of integration.	L4			
CO6	Apply the concepts of calculus and linear algebra to the given problem and submit a re	port			

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2										PO12	PSO1	PSO2
CO1													1	1
CO2	3								2	2			1	1
CO3	3								2	2			1	1
CO4		3											1	1
CO5		3											1	1
CO6	3								2	2			1	1

Syllabus					
Unit No.	Contents	Mapped CO's			
I	Matrices-Linear System of Equations: Rank of a matrix by Echelon form, Normal form, PAQ form, solving system of homogeneous and non-homogeneous linear equations.	CO1,CO2, CO4,CO6			
II	Eigen values and Eigen Vectors: Eigen values, Eigen vectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalization of a matrix, quadratic forms and nature of the quadratic forms.	CO1,CO2, CO4,CO6			
III	Mean Value Theorems: Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin's theorems with remainders (without proofs).	CO1,CO3, CO5,CO6			
IV	Multivariable Calculus: Functions of several variables, Jacobian, Functional dependence, maxima and minima of functions of two variables, method of Lagrange's multipliers.	CO1,CO3, CO5,CO6			
V	Multiple Integrals: Double integrals, change of order of integration, double integration in polar coordinates, Triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates, volume as triple integral. Application- Areas enclosed by plane curves.	CO1,CO3, CO5,CO6			

TΔο	rning	Rose	nirces

Text Books:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006

Reference Books:

1. N.P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi Publications, 2008.

e- Resources & other digital material:

- 1. https://nptel.ac.in/courses/111/108/111108157/
- 2. https://www.nptel.ac.in/courses/111/104/111104125/
- 3. https://youtu.be/xDSejIvZmg4
- 4. http://202.53.81.118/ -> PVPSIT FED-Moodle