PERCEPTION AND COMPUTER VISION

(Honors)						
Course Code	20IT6701C	Year	IV	Semester	Ι	
Course Category	Honors	Branch	IT	Course Type	Theory	
Credits	4	L-T-P	4-0-0	Prerequisites		
Continuous Internal		Semester End				
Evaluation :	30	Evaluation:	70	Total Marks:	100	

	Course Outcomes	Blooms
Upon s	Taxonomy Level	
CO1	Identify basic concepts, terminology, theories, models, and methods in the field of computer vision	L2
CO2	Understand known principles of the human visual system	L2
CO3	Apply basic methods of computer vision related to multi-scale representation, edge detection, and detection of other primitives, stereo, motion, and object recognition	
CO4	Analyze the design of a computer vision system for a specific problem	L4
C05	Evaluate the efficiency of computerVision	L5

Contribution of Course Outcomes towards the achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L: Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3				3					3	3	3
CO2	3	3	3				3					3	3	3
CO3	3	3	3				3					3	3	3
CO4	3	3	3				3					3	3	3
CO5	3	3	2				2					2	2	2

	Syllabus					
Unit No	Contents	Mapped COs				
Ι	Introduction, the challenges, images and imaging operations in low-level vision edge detection, corner, interest point, and invariant feature detection	, CO1				
п	Texture analysis, binary shape analysis, boundary pattern analysis, detection of linear, circular, and elliptic structures, the generalized Hough transform, pattern matching techniques	CO2				
III	object segmentation and shape models, basic classification concepts, the three dimensional world, invariants and perspective, image transformations and camera calibration, and motion					
IV	Real-time vision systems, face detection, and recognition, surveillance in-vehicle vision systems	cO4				
V	Machine learning and deep learning concepts in computer vision.	CO5				

Learning Resources						
Text Books						
1. Computer vision by Dana H. Ballard, Christopher M. Brown, Prentice Hall						

2. 3D computer vision: efficient methods and applications by Christian Wohler, Springer Berlin Heidelberg