Applications of Deep Learning

(HONORS)

Course Code	20IT6701A	Year	IV	Semester	I
Course Category	HONORS	Branch	IT	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	-
Continuous Internal		Semester End			
Evaluation :	30	Evaluation:	70	Total Marks:	100

	DI.	
Upon	successful completion of the course, the student will be able to	Blooms Taxonomy Level
CO1	Understand the fundamental techniques and principles of deep learning.	L2
CO2	Apply concepts and major architectures of deep networks to build solutions for variety of problems.	L3
CO3	Apply Deep learning techniques to build applications in various domains.	L3
CO4	Analyze CNN techniques to classify images and detect objects and prepare an effective report.	L4

Contribution of Course Outcomes towards the achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L: Low)										of				
correl	PO1		~ /		um, L: PO5			PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2
CO1	3	3	3									3	3	3
CO2	3	3	3				2					3	3	3
CO3	3	3	2				3					3	3	3
CO4	3	3	3									2	3	3

Syllabus						
Unit No	-					
I	A Review of Machine Learning—The Learning Machines, How Can Machines Learn? Biological Inspiration, What Is Deep Learning? Fundamentals of Deep Networks—Defining Deep Learning, What Is Deep Learning? Common Architectural Principles of Deep Networks: Parameters, Layers, Activation Functions, Loss Functions, Hyper parameters.	CO1,CO2				
II	Building Blocks of Deep Networks—RBMs, Auto encoders, Variation Auto encoders. Major Architectures of Deep Networks: Unsupervised pre trained networks, Deep Belief Networks, Generative Adversarial Networks.	CO1,CO2				
III	Convolution Neural Networks (CNNs) – The Convolution Operation, Motivation, Pooling, Convolution and Pooling as an Infinitely Strong Prior, Variants of the Basic Convolution Function, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised Features	CO1, CO4				
IV	Sequence Modeling – Recurrent and Recursive Nets – Unfolding Computational Graphs, Recurrent Neural Networks, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, The Long Short-Term Memory	CO1, CO3				
V	Deep Learning applications – Computer Vision, Speech Recognition, Natural Language Processing, Other Applications.	CO1, CO3				

Learning Resources

Text books

- 1. Deep learning: A practitioner's approach, JoshPattersonandAdamGibson,FirstEdition,2017,O'ReillyMedia.
- 2. Deep Learning, Iam Good fellow, Yoshua Bengio, AaronCourville, 2016,MITPress.

References

- $1. \begin{tabular}{ll} Fundamentals of Deep Learning, Designing next-generation machine in telligence algorithms, Nikhil Buduma, O''Reilly, \\ \end{tabular}$
- 2. DeeplearningCookBook,PracticalrecipestogetstartedQuickly,DouweOsinga,O"Reilly, 2019, Shroff Publishers.

e-Resources and other Digital Material

- 1. https://www.deeplearningbook.org/
- 2. https://onlinecourses.nptel.ac.in/noc20_cs62/preview
- $3. \ https://www.udemy.com/share/101X6W/\ (or)\ https://www.udemy.com/course/deep-learning-advanced-nlp/$
- $4. \quad https://www.youtube.com/watch?v=5tvmMX8r_OM\&list=PLtBw6njQRU-rwp57C0oIVt26ZgjG9NI$