DATA SCIENCE

Course Code	20IT4703E	Year	IV	Semester	I
Course Category	PE-5	Branch	IT	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Data Mining Concepts
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Upon S	Course Outcomes	Blooms Taxonomy Level		
CO1	Understand the basic terms of Data Science.	L2		
CO2	Understand the Data Science process.	L2		
CO3	Explain how to Handle large data on a single computer	L2		
CO4	Apply Data Visualization, plotting techniques.	L3		

Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations(3:Substantial,2: Moderate,1:Slight)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	
CO2	3												3	
CO3	3												3	
CO4	3												3	
						Sy	llabus	•						
Unit No	Unit No Contents								Map CO	ped				

	Data science in a big data world : Benefits and uses of data science and big	CO1
	data	
	Facets of data: Structured data, Unstructured data, Natural language,	
I	Machine-generated data, Graph-based or network data, Audio, image, and	
	video, Streaming data	
	The data science process: Setting the research goal, Retrieving data,	
	Data preparation, Data exploration, Data modeling or model building,	
	Presentation and automation	

	The data science process : Overview of the data science process: Don't be a	CO1
	slave to the process, Defining research goals and creating a project charter:	CO2
	Spend time understanding the goals and context of your research, Create a	
	project charter	
II	Retrieving data: Start with data stored within the company, Don't be afraid	
	to shop around, Do data quality checks now to prevent problems later	
	Cleansing, integrating, and transforming data: Cleansing data, Correct	CO1
	errors as early as possible, Combining data from different data sources,	
	Transforming data	CO2
III	Exploratory data analysis, Build the models: Model and variable selection,	
	Model execution, Model diagnostics and model comparison	
	Handling large data on a single computer : The problems you face when	CO1
IV	handling large data	CO3
	General techniques for handling large volumes of data: Choosing the right	
	algorithm, Choosing the right data structure, Selecting the right tools	
	General programming tips for dealing with large data sets: Don't reinvent	
	the wheel, Get the most out of your hardware, Reduce your computing needs.	
	Plotting and Visualization: A Brief matplotlib API Primer: Figures and	CO1
	Subplots, Colors, Markers, and Line Styles, Ticks, Labels, and Legends,	CO4
V	Annotations and Drawing on a Subplot, Saving Plots to File, matplotlib	
	Configuration	
	Plotting with pandas and sea born: Line Plots, Bar Plots, Histograms and	
	Density Plots, Scatter or Point Plots, Facet Grids and Categorical Data	

Learning Resources

Text Books

- 1. Introducing Data Science: Big data, machine learning, and more, using Python tools Davy Cielen, Arno D. B. Meysman, and Mohamed Ali, Manning Publishers
- 2. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython Wes McKinney, Second Edition, 2018, O'Reilly Media, (Unit 4- (9th Chapter)

References

- 1. Avrim Blum, John Hop croft and Ravindran Kannan. Foundations of Data Science.
- 2. Jure Leskovek, Anand Rajaraman and Jeffrey Ullman .Mining of MassiveDatasets.v2.1,CambridgeUniversityPress.2 014.(free online)
- 3. Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques, 3rd Edition. ISBN 0123814790.2011.

E- Resources and other Digital Material

https://www.coursera.org/browse/data-science/data-analysis https://nptel.ac.in/courses/106106179