EMBEDDED & REAL TIME SYSTEMS

Course Code	20EC2701A	Year	IV	Semester	I
Course Category	Open Elective-III	Branch	Commo n to All	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes				
Upon successful completion of the course, the student will be able to				
CO1	Apply design methodologies for embedded systems. (L3)			
CO2	Build embedded systems with specifications and technological choice. (L3)			
CO3	Develop fundamental systems such as sensors, actuators, converters, processors, intra-and inter-communication networks and interfaces. (L3)			
CO4	Utilize modern hardware/software tools for building prototypes of embedded systems. (L3)			

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO CO/PO & PO PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 PO12 PSO1 PSO2 **PSO** 11 **CO-1** 2 CO-2 2 2 2 2 CO-3 3 3 3 3 **CO-4** 2 2 2 2 Average* (Rounded 2 2 2 2 2 to nearest integer)

Syllabus				
Unit No.	Contents	Mapped CO		
I	Introduction: History of Embedded Systems, Major Application Areas of Embedded Systems, Purpose of Embedded Systems, Core of the Embedded System, Sensors and Actuators, Communication Interface, Embedded Firmware.	CO1		

	Hardware Software Co-Design And Programme Modeling:			
II	Characteristics of an Embedded System, Quality Attributes of			
	Embedded Systems, Fundamental Issues in Hardware Software Co-			
	Design, Computational Models in Embedded Design, Hardware			
	Software Trade-offs.			
III	Devices in Embedded Systems: Types of supporting devices for an			
	embedded system – various forms of ROM, RAM devices, interrupt			
	sources, Interrupt Service Mechanism, serial port devices, parallel	CO3		
	port devices, timers and counting devices.			
IV	Communication Buses for Device Networks: Interfacing Features			
	in Device Ports, Wireless Devices, Networked Embedded Systems,			
	Serial Bus Communication Protocols, Parallel Bus Device Protocols-			
	Parallel Communication Network Using ISA, PCI, PCI-X and			
	Advanced Buses.			
	Design of Real Time Systems: processors in complex embedded			
V	systems, design process in embedded system, optimizing design	CO4		
	metrics, Case study for adaptive cruise control system in car.			

Learning	Resources
----------	-----------

Text Books:

- 1. Embedded Systems Architecture, Programming and Design- Raj Kamal, Second Edition, McGrawHill Education.
- 2. Introduction to Embedded System- Shibu KV, Mc-Graw Hill Edition.

References:

- 1. Peckol, "Embedded system Design", John Wiley & Sons, 2010
- 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013
- 3. Embedded/Real-Time Systems, Dr. K.V.K.K. Prasad, dream Tech press

e- Resources & other digital material

- 1. Microsoft PowerPoint pcp_embedded_system_intro (iitb.ac.in)
- 2. NPTEL :: Electrical Engineering Embedded Systems