Course Code	20SA8753	Year	IV	Semester	Ι
Course Category	Skill Advanced course	Branch	ME	Course Type	Lab
Credits	1.5	L - T - P	0 - 0 - 3	Prerequisites:	Nil
Continuous Internal Evaluation	-	Semester End Evaluation	50	Total Marks	50

MECHATRONICS LAB

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	BTL	Expts
CO1	Build pneumatic and electro pneumatic circuits for various mechanical applications.	Apply	L3	1-8
CO2	Demonstrate the features of simulation software.	Apply	L3	9-12
CO3	Apply the knowledge of MATLAB software to check the truth tables of logic gates.	Apply	L3	13
CO4	Demonstrate the behavior of sensors.	Apply	L3	14
CO5	Develop Ladder (PLC) programs for given application	Apply	L3	15

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2						3	2		1	3	1
CO2	3		2						3	2		1	3	1
CO3	3		2						3	2		1	3	1
CO4	3		2						3	2		1	3	1
CO5	3		2						3	2		1	3	1

Note: <u>Twelve experiments must be conducted</u>

LIST OF EXPERIMENTS

Syllabus					
Exp. No.	Content	Mapped CO			
PNEU	JMATICS				
1.	Direct control of single and double acting cylinders				
2.	Indirect control of single and double acting cylinders				
3.	Single cycle operation of double acting cylinder				
4.	Multi cycle operation of double acting cylinder				
ELEC	CTRO PNEUMATICS				
5.	Direct control of a double acting cylinder using a solenoid valve	601			
6.	Indirect control of a double acting cylinder using a solenoid valve and relays	CO1			
7.	Operation of double acting cylinder with AND & OR logic circuit using relays				
8.	Single cycle operation of a double acting cylinder using electrical limit switches and relays				
AUT	OMATION STUDIO SOFTWARE				
9.	Modeling and simulation of single and double acting cylinder (Direct	CO2			

	control)	
10.	Modeling and simulation of single and double acting cylinder (Indirect	
	control)	
11.	Modeling and simulation of single cycle operation of a double acting	
	cylinder using limit switch	
12.	Modeling and simulation of multi cycle operation of a double acting	
	cylinder using limit	
MATL	AB PROGRAMMING	
13.	Simple MATLAB Programmes to verify truth tables of a) NOT b) AND	CO3
	c) NAND d) OR e) NOR f) XOR g) XNOR logic gate	
BEHA	VIOUR OF SENSORS	
14.	A) Behavior of Inductive sensor NJ	
	B) Behavior of Capacitive sensor CJ	
	C) Behavior of Magnetic sensor MJ	
	D) Behavior of Ultrasonic sensor	CO4
	E) Behavior of Through beam sensors	
	F) Behavior of Reflex photoelectric sensor OBS	
	G) Behavior of Direct detection sensors OJ	
PLC P	ROGRAMMING (LADDER PROGRAMMING)	
15.	A) PLC program to implement various logic gates	
	B) PLC Program to Operate 4 Outputs Simultaneously with Time	
	Delay	CO5
	C) PLC Program to do Mathematical Functions	
	D) PLC Program to Control Traffic Lights.	