POWER PLANT ENGINEERING

Course Code	20ME4703C	Year	IV	Semester	I	
Course	Professional	Branch	ME	Course	Theory	
Category	Elective-V Branch		IVIL	Type	Theory	
Credits	2	L-T-P	3-0-0	Pre-	Thermodynamics,	
Credits	3	L-1-F	3-0-0	requisites	Heat Transfer	
Continuous		Semester		Total		
Internal	30	End	70	Marks	100	
Evaluation		Evaluation		IVIAIKS		

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	BTL	Units
CO1	Understand various sources of power plants, their working principles and methods of pollution controls.	Understand	L2	1,2,3,4,5
CO2	Apply the basic concepts to evaluate the performance of power plants with different working medium and accessories	Apply	L3	1,2,3
CO3	Analyze the instrumentation concepts and evaluate power plant economics	Analyze	L4	4,5

Contribution of Course outcomes towards achievement of Program outcomes														
	& Strength of correlations (High:3, Medium: 2, Low:1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2			2	3					2	3	1
CO2	3	2	2			2	1					2	3	1
CO3	3	2			2		1				2	2	3	1

Syllabus					
UNIT	Contents	Mapped CO			
I	INTRODUCTION TO THE SOURCES OF ENERGY: Resources and Development of Power in India. STEAM POWER PLANT: Plant Layout, Working of different Circuits, Fuel and handling equipments, types of coals, coal handling, choice of handling equipment, coal storage, Ash handling systems. COMBUSTION PROCESS: Properties of coal – overfeed and underfeed fuel beds, traveling grate stokers, and spreader stokers, retort stokers, pulverized fuel burning system and its components, combustion needs and draught system, Dust collectors, cooling towers and heat rejection, dearation. Corrosion and feed water treatment.	CO1, CO2			
П	DIESEL POWER PLANT: Introduction – IC Engines, types, construction— Plant layout with auxiliaries — fuel supply system, air starting equipment, lubrication and cooling system — super charging, application and comparison with other plants. GAS TURBINE POWER PLANT: Introduction — classification - construction — Layout with auxiliaries — Principles of working of closed and open cycle gas turbines. Combined Cycle Power Plants and comparison, Performance evaluation of the gas turbine plant.	CO1, CO2			
	HYDRO ELECTRIC POWER PLANT: Water power – Hydrological cycle / flow measurement – drainage area				

III	characteristics Hydrographs – storage and Pondage – classification of dams and spill ways. Hydro Projects And Plant: Classification – Typical layouts – Site selection of hydro plant - plant auxiliaries – plant operation pumped storage plants. NUCLEAR POWER PLANT: Fusion and fission Reactions, Nuclear fuel – breeding and fertile materials – Nuclear reactor – reactor operation, Fuel moderator and coolant. Types Of Reactors: Pressurized water reactor, Boiling water reactor, sodium graphite reactor, fast Breeder Reactor, Homogeneous Reactor, Gas cooled Reactor, Radiation hazards and shielding – radioactive waste disposal.	CO1, CO2
IV	HYBRID POWER PLANTS: Introduction, Advantages of combined working, Load division between power stations, Storage type hydro-electric plant in combination with steam plant, Run off River plant in combination with steam plant, Pump storage plant in combination with steam or Nuclear power plant, Coordination of hydro electric and gas turbine stations, coordination of hydroelectric and Nuclear power stations, coordination of different types of Power plants. POWER PLANT INSTRUMENTATION AND CONTROL: Importance of measurement and instrumentation in power plant, measurement of water purity, Gas analysis, O ₂ and CO ₂ measurements, measurement of smoke and dust, measurement of moisture in CO ₂ circuit, Nuclear measurements	CO1, CO3
V	POWER PLANT ECONOMICS: Capital cost, investment of fixed charges, operating costs, cost per KWh, general arrangement of power distribution, Load curves, load duration curve. Definitions of connected load, Maximum demand, demand factor, average load, load factor, diversity factor – related exercises. ENVIRONMENTAL CONSIDERATIONS: Effluents from power plants and Impact on environment – pollutants and pollution standards – Methods of Pollution control.	CO1, CO3

Learning Resources

xt books

- 1.A Course In Power Plant Engineering by Arora and Domkundwar, Dhanpatrai & co.2011
- 2. Power Plant Engineering, by P.K.Nag, TataMcHill-2008.

ference books

- 1.A Text Book of Power Plant Engineering, by R K Rajput, Lakshmi Publications, 2008.
- 2. Power Plant Engineering, by P.C. Sharma, S.K. Kataria Publications, 2009.
- 3. Power plant Engineering, by Ramalingam, Scietech Publishers-2010.
- 4. An Introduction to Power Plant Technology, by G.D. Rai, Khanna publications-1996.

E-Resources

1.https://onlinecourses.nptel.ac.in/noc21_me86/preview