PVPSIT Department of Mechanical Engineering

INDUSTRIAL ROBOTICS

Course code	20ME4702E	Year	IV	Semester	Ι		
Course	Professional	Branch	ME	Course Type	Theory		
category	Elective- IV	Draiten	IVIL	Course Type	Theory		
Credits	3	L-T-P	3-0-0	Prerequisites	-		
Continuous		Semester					
Internal	30	End	70	Total Marks	100		
Evaluation		Evaluation					

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	Level	Units
CO1	Understand the basic anatomy of robots, Kinematics,	Understand,	L2	1,2,3,
	robot sensors, programming and applications.	Communication	LZ	4,5
CO2	Apply transformations to solve robot kinematics,	Apply,	L3	2
	dynamics	Communication	LJ	2
CO3	Apply trajectory planning and robot programming skills	Apply, Modern		
		Tool Usage	L3	3
		Communication		
CO4	Apply knowledge of robot sensors and their applications in	Apply,	L3 4.5	
	industries	Communication	L3	4,5

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3									3			3	1
CO2	3	3	2							3			3	1
CO3	3	3	2		2					3			3	1
CO4	3		2							3			3	1

Syllabus						
UNIT	Contents	Mapped COs				
I	Introduction: Basic concepts - Robot anatomy - classification, robot specifications and Work volume, Types of Robot actuators- Pneumatic, Hydraulic actuators, electric & stepper motors, End Effectors- types of end effectors, grippers and tools, Requirements and challenges of end effectors.	CO1				
п	Transformations - homogeneous coordinates for translation & rotation, Kinematics and Dynamics: Manipulators - kinematics: D-H notation, Forward and inverse kinematics: simple problems, Dynamics- lagrangian formulation, introduction to jacobian computation.	CO1, CO2				
III	Trajectory planning - trajectory planning with cubic polynomial, blending, higher order trajectories Robot Programming: Robot language classification - programming methods - off and on-line programming - Lead through method - Teach pendent method and programming languages, simple programs.	CO1, CO3				
IV	Sensors: Sensor devices, Types of sensors - contact, position and displacement sensors, Force and torque sensors - Proximity and range sensors - acoustic sensors –slip sensors, Robot vision systems	CO1, CO4				
V	Industrial Applications: Application of robots - material handling,	CO1,				

processing operations, assembly, inspection, safety considerations.	CO4	
Recent developments in robotics -mobile robot, microbots.		

Learning Resource

Text books:

- 1. Mikell P. Groover. Industrial Robotics Technology Programming and Applications, McGraw Hill Co., Singapore, 1995.
- 2. Robotics and Control / Mittal R K & Nagrath I J / TMH.2017.

Reference books

- 1. Robotic Engineering by Richard D.Klafter, Prentice Hall
- 2. Introduction to Robotics Saeed B.Niku, Prentice Hall
- 3. Introduction to Robotics John J. Craig, Addison Wesley

E-Resources & other digital Material:

1.http://nptel.ac.in/downloads/112101098/