a						
Course Code	20EE4702B	Year	IV	Semester(s)	Ι	
Course Category	Professional Elective-IV	Branch	EEE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Basic Electrical and Electronics Engineering	
Continuous Internal Evaluation:	30	Semester End Evaluatio n:	70	Total Marks:	100	

ELECTRICAL VEHICLES

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Define the concepts of electric vehicle, hybrid vehicle, fuel cell vehicle and energy storage. (L1)					
CO2	Classify performance of electric vehicle, hybrid vehicle, fuel cell vehicle and energy storage. (L4)					
CO3	Develop the basic schemes of electric vehicle, hybrid vehicle, fuel cell vehicle and battery technology of Electric vehicles. (L3)					
CO4	Identify various drive system and technologies used in the vehicles. (L3)					
CO5	Submit a report in electric and hybrid vehicle, propulsion system, energy storage systems, energy management for Electric vehicle applications.					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

Strongen of correlations (cringing 21 incurating rule ()														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2		3				3	3					3	3	
CO3	3		3	3			3					3	3	
CO4	3					3						3	3	
CO5									3	3			3	

	SYLLABUS					
Unit	Contents					
No.		СО				
Ι	Introduction to Electric Vehicles: History of Electric and Hybrid Vehicles,					
	Environmental Impact.	CO1,				
	Vehicle Fundamentals: Vehicle resistance, Dynamic Equation, Vehicle	CO3, CO5				
	Performance, Braking Performance.					
II	Configuration and Performance of Electric Vehicles: Configurations of					
	Electric Vehicles, Performance of Electric Vehicles, Traction Motor	CO2, CO3,				
	Characteristics, Tractive Effort, Concept and Architectures of Hybrid	CO3, CO4, CO5				
	Electric Drive Trains.	,				

III	Hybrid Electric Vehicles: Concept of Hybrid Electric Drive Trains, Architectures of Hybrid Electric Drive Trains, Series Hybrid Electric Drive Trains, Parallel Hybrid Electric Drive Trains.	CO2, CO3, CO4, CO5
IV	Fuel Cell Vehicles: Operating Principles of Fuel Cells, Electrode Potential	CO2, CO3,
	and Current–Voltage Curve, Fuel and Oxidant Consumption, Fuel Cell System Characteristics, Fuel Cell Technologies, Fuel Supply.	CO3, CO4, CO5
V	Energy Storage: Electrochemical Batteries: Electrochemical Reactions, Thermodynamic Voltage, Specific Energy, Specific Power, Energy Efficiency, Battery Technologies. Ultra capacitors: Features of Ultra capacitors, Basic Principles of Ultra capacitors, Performance of Ultra capacitors, Ultra capacitor Technologies, Ultrahigh-Speed Flywheels, Hybridization of Energy Storages.	CO1, CO2, CO3, CO4, CO5

Learning Resources

 Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electrical and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
Iqbal Hussein, *Electric and Hybrid Vehicles: Design Fundamentals*, CRC Press, 2003.

Reference Books

Text Books

1. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

e- Resources & other digital material

1. https://www.sciencedirect.com/topics/social-sciences/hybrid-electric-vehicle