INTRODUCTION TO ROBOTICS

Course Code	20EC6701D	Year	IV	Semester	Ι	
Course Category	HONORS	Branch	ECE	Course Type	THEORY	
Credits	4	L-T-P	3-1-0	Prerequisites		
Continuous Internal	ntinuous ernal 30		70	Total Marks:	100	
Evaluation:	20	Evaluation:	, 0		100	

	Course Outcomes
Upon su	ccessful completion of the course, the student will be able to
CO1	Summarize the history of robotics, technological advances and types of End
COI	Effectors (L2)
CO_{2}	Utilize the knowledge gained on different robotic drive systems, actuators and their
02	control (L3)
CO3	Make use of the Sensors based on different applications (L3)
CO4	Predict the future applications of robotics (L3)

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation			2-N	2-Medium correlation				3-Strong correlation					
* - Average value indi			licates	icates course correlation str				rength with mapped PO					
COs	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO 10	PO 11	PO 12	Ī

COa	PO	PS	PS											
COs	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	2												1	
CO2	2					2							1	
CO3	2					2			2				2	
CO4	3								3				2	1
Average *														
(Rounde d to nearest	2								3				2	1
integer)														

Syllabus				
Unit	Contents	Mapped CO		
No.				
Ι	Fundamentals of Robotics: Introduction, History of robotics, Robot anatomy, work volume, robot drive systems, control systems and dynamic performance, precision of movement, end effectors, robotic sensors, applications	CO1, CO2		
II	Control systems & Components: control systems concepts, models,control system analysis, activation and feedback components, position sensors, velocity sensors power transmission systems, joint control design	CO2, CO3		
III	End effectors: Types of end effectors, mechanical grippers, tools as end effectors, end effector interface, considerations in gripper selection and design,	CO2, CO4		

IV	Sensors: Transducers & sensors, tactile sensors, proximity and range sensors, use of sensors in robotics	CO1, CO3
V	Robot Programming: Robot language structure, methods of robot programming, motion interpolation, WAIT, SIGNAL and Delay Commands, limitations of lead through methods	CO3, CO4

Learning Resources
Text Books
1. Mikell P. Groover, Mitchell Weiss, Roger N. Nagel & Nicholas G. Odrey, Industrial
Robotics Technology, Programming & Applications, Tata McGraw Hill, 2008.
2. Mittal R K & Nagrath I J, Robotics and Control, TMH
Reference Books
1. Introduction to Robotics – John J. Craig, Addison Wesley
2. Robotics – K. S. Fu, Gonzalez & Hee
3. Introduction to Robotics – Saeed B.Niku, Prentice Hall
e- Resources & other digital material
1 http://nptel.ac.in/downloads/112101098/

1. http://nptel.ac.in/downloads/112101098/ 2. <u>https://nptel.ac.in/courses/107/106/107106090/</u>