Course	20EC/703E	Voor	IV	Somostor	Ι	
Code	201047031	1 Cal	1 V	Semester		
Course	Program	D 1	ECE	G T	Theory	
Category	Elective-V	Branch	ECE	Course Type		
Credits	3	L-T-P	3-0-0	Prerequisites		
Continuous		Semester		Tetel		
Internal	30	End	70	10tai Mortra	100	
Evaluation:		Evaluation:		Marks:		

	Course Outcomes					
Upo	Upon successful completion of the course, the student will be able to					
CO1	Illustrate the Embedded Systems and its constituents. (L2)					
CO2	Apply design methodologies for embedded systems. (L3)					
CO3	Build fundamental embedded system. (L3)					
CO4	Develop embedded systems with specifications and technological choice. (L3)					
COS	Utilize modern hardware/software tools for building prototypes of embedded					
COS	systems. (L3)					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
CO/PO & PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO12	PSO1	PSO2
CO-1	2									2			2	
CO-2	2									2			2	
CO-3	2									2			2	
CO-4	3					2				3			3	
CO-5	2				2					2			2	
Average* (Rounded to nearest integer)	2									2			2	

	Syllabus					
Unit No.	Contents					
1	Introduction: History of Embedded Systems, Major Application Areas of Embedded Systems, Purpose of Embedded Systems, Core of the Embedded System, Sensors and Actuators, Communication Interface, Embedded Firmware.	CO1,CO2				
2	Hardware Software Co-Design And Programme Modeling: Characteristics of an Embedded System, Quality Attributes of Embedded Systems, Fundamental Issues in Hardware Software Co-Design, Computational Models in Embedded Design, Hardware Software Trade-offs.	CO1,CO3				
3	Devices in Embedded Systems: Types of supporting devices for	CO1,CO4				

	an embedded system – various forms of ROM, RAM devices, interrupt sources, Interrupt Service Mechanism, serial port devices, parallel port devices, timers and counting devices.						
	Communication Buses for Device Networks: Interfacing						
4	Features in Device Ports, Wireless Devices, Networked						
	Embedded Systems, Serial Bus Communication Protocols,	CO1,CO4					
	Parallel Bus Device Protocols- Parallel Communication Network						
	Using ISA, PCI, PCI-X and Advanced Buses.						
	Design of Real Time Systems: processors in complex embedded						
5	systems, design process in embedded system, optimizing design						
	metrics, Case study for adaptive cruise control system in car.						

Learning Resources

Text Books

- 1. Raj Kamal, Embedded Systems Architecture, Programming and Design, 2nd Ed., McGraw Hill
- 2. Shibu KV, Introduction to Embedded System, Mc-Graw Hill.

References

- 1. Peckol, Embedded system Design, John Wiley & Sons, 2010
- 2. Lyla B Das, Embedded Systems-An Integrated Approach, Pearson, 2013
- 3. Dr. K.V.K.K. Prasad, Embedded/Real-Time Systems, Dream Tech press

e- Resources

- 1. Microsoft PowerPoint pcp_embedded_system_intro (iitb.ac.in)
- 2. NPTEL :: Electrical Engineering Embedded Systems