Advanced Physical Design

Course Code	20EC2701D	Year	IV	Semester	I	
Course Category	Open Elective-III	Branch	ECE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Nil	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO ₁	O1 Design power-mesh for the given specifications, and analyze IR drop and EM						
	issues.(L3)						
CO ₂	Implement the low power intent of the design using industry standard UPF(L3)						
CO ₃	Verify whether the design meets the power intent in UPF (L3)						
CO4	Analyze and fix chip-timing issues by considering on-chip variations(L4)						
CO5	Perform physical verification both at LVS & DRC level and fix all issues(L3)						

Mapping of course outcomes with Program outcomes (CO/PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation
* - Average value indicates course correlation strength with mapped PO

- Average value indicates course correlation strength with mapped FO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	3								3	1
CO2	2	3	2	2	3								3	1
CO3	3	2	2	2	3								3	1
CO4	3	2	2	2	3								3	1
CO5	3	2	2	2	3								3	1
Avg.	3	2	2	2	3								3	1

Syllabus					
Unit No.	Contents	Mapped CO			
1	Power Analysis Introduction to power analysis, Goals and objectives, Data preparation, Power mesh design, Static IR analysis, Dynamic IR analysis, Signal and power EM. Types of Power consumption in CMOS Circuits.	CO1			

2	Low Power Design - I Introduction, Low Power optimization in the SOC flow, Architectural techniques for low power, Special cells for power management, Gate level Low Power Techniques	CO2
	Low Power Design – II Low Power Implementation Techniques (Multi-Voltage, Power Gating, etc.), UPF formats, Low Power checks.	CO3
4	Advanced STA Hierarchical STA (ILM, XILM, ETM), On-chip Variations (OCV), Advanced On-Chip Variations (AOCV), Parametric On-Chip Variations(POCV), Introduction to LVF.	CO4
5	Physical Verification: Physical verification - Introduction, goals and objectives, Design Rule Check (DRC), Layout Versus Schematic check (LVS), and Electrical Rule Check(ERC). Design for Manufacturability (DFM): Introduction, DFM aware routing, DFM checks and fixing (Pattern Matching, MAS).	CO5

Learning Resources

Text Books

- 1. Rakesh Chadha and J. Bhasker, An ASIC Low Power Prime, Springer, 2013
- 2. Voltus Reference Manuals, 17.12.000
- 3. Tempus Reference Manual, 17.12.000

Reference Books

1.Calibre Reference Manual, 2017.1_17.12

e-Resources

https://www.digimat.in/nptel/courses/video/106105161/L01.html
