MATLAB PROGRAMMING

(Open Elective – II)

Course	20EC2601A	Year	III	Semester	II
Code					
Course	OE - II	Branch	Offered	Course Type	Theory
Category			by ECE		
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	Total Marks:	100
Internal		Evaluation:			
Evaluation:					

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Outline the basic concepts of MATLAB. (L2)
CO2	Develop programs for scientific and mathematical problems. (L3)
CO3	Analyze an engineering system/Problem through graphical representation and numerical
	analysis. (L4)
CO4	Build optimized code for various applications in Engineering and Technology.(L3)

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation
* - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PS O2
CO1	2									1			2	2
CO2	3									2			3	3
CO3		2								2			2	2
CO4	3									2			3	3
Average*	3	2								2			2	2

	Syllabus	
Unit	Contents	Mapped CO
No.		CO
I	Introduction: Starting MATLAB, Working in command window, Arithmetic operations, Display formats, Elementary Math Built-in functions, Defining scalar variables, useful commands for managing variables, Script files, Examples of MATLAB applications	CO1,CO2

	Creating arrays and Mathematical operations with arrays: Creating 1-							
	dimensional and 2- dimensional arrays, The Transpose operator, Array							
	addressing, using a colon: in addressing arrays, Adding elements to existing							
II	variables, Deleting elements, Built in functions for handling arrays, Strings and	CO1,CO2,						
111	strings as variables, Addition and Subtraction, Array Multiplication and	CO4						
	Division, Element-by-Element operations, using arrays in MATLAB built-in							
	math functions, Built in functions for analysing arrays, Generation of Random							
	Numbers, Examples of MATLAB applications.							
	Two Dimensional and Three Dimensional Plots: plot, fplot commands,							
	Formatting a plot, plots with logarithmic axes, error bars, special graphics,							
III	Histograms, Polar plots, putting multiple plots on the same page, Multiple	CO1,CO2, CO3,CO4						
	figure windows, Examples, Line plots, Mesh and surface plots, plots with	CO3,CO4						
	special graphics, The view command, Examples of MATLAB applications							
	Programming in MATLAB: Relational and Logical operators, conditional							
	statements, The switch-case statement, Loops, Nested Loops and Nested							
IV	conditional statements, The break and continue commands, creating a function	CO1,CO2,						
1,	file, structure of a function file, Local and Global variables, saving a function	CO4						
	file, using a User-defined function, Examples of simple User-defined functions,							
	comparison between script files and function files.							
	Polynomial, Curve-fitting, Interpolation, Numerical Analysis: Polynomials,							
V	curve fitting, Interpolation, The Basic fitting interface, Examples, solving	CO2,CO3, CO4						
'	equation of one variable, Finding minimum or maximum of a function,							
	Numerical integration, ordinary differential equations.							

--

|--|

Text Books

1. MATLAB: An Introduction with applications – Amos Gilat, Wiley India Pvt. Ltd, 4th Ed., 2012.

Reference Books

- 1. Getting started with MATLAB Rudra Pratap, Oxford University Press, 2010
- 2. MATLAB and SIMULINK for Engineers Agam Kumar Tyagi, Oxford University Press, 2012.
