ANTENNAS AND PROPAGATION

Course	20EC3602	Year	III	Semester	II	
Code						
Course	Program	Branch	ECE	Course Type	Theory	
Category	Core					
Credits	3	L-T-P	3-0-0	Prerequisites	Electro Magnetic	
					Fields & Waves	
Continuous	30	Semester	70	Total Marks:	100	
Internal		End				
Evaluation:		Evaluation:				

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Interpret the fundamental parameters of antennas and wave propagation in the						
	construction of a wireless communication link. L2						
CO2	Analyse various wire antennas, antenna arrays and establish their mathematical						
	relations. L4						
CO3	Develop antennas for different frequency ranges and analyse their radiation properties						
	L3						
CO4	Analyse the wave propagation through different layers of atmosphere L4						

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* _	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2								1	1		1	1	1
CO2		3							2	2		2	2	2
CO3	2								2	2		2	2	2
CO4		1							1	2		1	1	1
Average* (Rounded to nearest integer)	2	2							2	2		2	2	2

	Syllabus				
Unit	Contents				
No.		CO			
Ι	Antenna Fundamentals: Introduction, Types of Antennas, radiation	CO1,			
	mechanism – single wire, two- wire, dipoles, current distribution on a thin	CO2			
	wire antenna, antenna parameters - radiation pattern, radiation power				
	density, radiation intensity, beam width, directivity, antenna efficiency,				
	gain, realized gain, beam efficiency, bandwidth, Polarization, input				
	impedance antenna radiation efficiency, antenna vector effective length,				
	equivalent areas and Friis transmission equation.				
II	Linear Wire Antennas: Retarded potentials, radiation from small	CO2,			
	electric dipole, quarter wave monopole and half wave dipole – current	CO3			
	distribution, evaluation of field components, power radiated, radiation				

	resistance, antenna theorems. Loop antennas: field components,							
	comparison of far fields of small loop and short dipole. Helical							
	antenna- monofilar, axial mode and normal mode operations,							
III	Antenna Arrays: Introduction, 2-element arrays – different							
	cases, principle of pattern multiplication, N-element uniform							
	linear arrays – broadside, end fire arrays, EFA with increased							
	directivity, concept of scanning arrays, directivity relations,							
	Binomial arrays.	~ ~ ~ ~						
IV	Broadband & Microwave Antennas:	CO2,						
	Broadband Antennas: Introduction, folded dipole, Yagi-Uda antenna,	CO3						
	reflector antennas- plane reflector, corner reflector, parabolic reflector,							
	feed methods for parabolic reflectors, F/D ratio, aperture blocking.							
	Microstrip Antennas – Introduction, Features, Advantages and							
	Limitations, Rectangular Microstrip Antenna – Geometry, Feeding							
	Methods, Characteristics of Microstrip Antennas. Circular Microstrip							
	Antenna – Geometry& Design Parameters							
V	Wave Propagation: Ground wave propagation-characteristics,	CO1,						
	parameters, wave tilt, flat and spherical earth considerations. Sky wave	CO4						
	propagation – structural details of ionosphere, refraction and reflection,							
	ray path, critical frequency, MUF, LUF, OF, skip distance, virtual							
	height, Ionospheric abnormalities, Space wave propagation –							
	mechanism, LOS and radio horizon. Tropospheric wave propagation –							
	radius of curvature of path, effective earth's radius.							

Learning Resources

Text Books

- 1. Constantine A. Balanis Antenna Theory and Applications John Wiley & Sons, 4th Ed., 2021
- 2. John D Kraus, Ronald J Marhefka & Ahmad S Khan Antennas and Wave Propagation TMH, 4th Ed., 2010.

Reference Books

- 1. E.C. Jordan and K.G. Balmain Electromagnetic Waves and Radiating Systems PHI, 2nd Ed., 2009.
- 2. K.D. Prasad, Satya Prakashan Antennas and Wave Propagation Tech India Publications, New Delhi, 2001
- 3. E.V.D. Glazier and H.R.L. Lamont Transmission and propagation-, vol.5 Standard Publishers Distributors- New Delhi

e- Resources & other digital material

- 1. http://www.antenna-theory.com/
- 2. http://www.antenna-theory.com/basics/main.html
- 3. https://nptel.ac.in/courses/108/105/108105114/#