PVPSIT Department of Mechanical Engineering

WACHINE DI MANIES LAD										
Course Code	20ME3653	Year	III	Semester	II					
Course Category	Program Core	Branch	Branch ME Course Type							
Credits	1.5	L-T-P	0-0-3	Pre-requisites	Nil					
Continuous Internal Evaluation	15	Semester End Evaluation	35	Total Marks	50					

MACHINE DYNAMICS LAB

Course Outcomes: Upon successful completion of the course, the student will be able to

COs	Statement	Skill	BTL	Expts.
CO1	Evaluate the natural frequencies in different vibrating systems and the effect of gyroscopic couple	Analyze	L4	1,2,3,12
CO2	Compute the radius of gyration & Moment of Inertia of the oscillating part in the vibration system	Analyze	L4	4,5
CO3	Test for amplitude and damping coefficient in damped and undamped vibrating systems	Analyze	L4	6,7,8
CO4	Verify the static and dynamic balancing and determination of whirling speeds of shaft	Analyze	L4	9,10,11

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3						1			3	2
CO2	3	3	2	3						1			3	2
CO3	3	3	2	3						1			3	2
CO4	3	3	2	3						1			3	2

Syllabus						
Expt.	Contents	Mapped				
No		CO				
1.	Determination of Natural frequency of single mass, single helical spring system.	CO1				
2.	Determination of Natural frequency of the combination of springs – springs in parallel or springs in series.	CO1				
3.	Determination of Natural frequency of undamped torsional single rotor system.	CO1				
4.	Determination of radius of gyration of a given compound pendulum.	CO2				
5.	Determination of radius of gyration, a moment of inertia – bifilar suspension	CO2				
	Method.					
6.	To find the Damping coefficient of the torsional single rotor system.	CO3				
7.	Determination of amplitude of vibration of a damped vibrating system.	CO3				
8.	Determination of amplitude of vibration of an undamped vibrating system.	CO3				
9.	Verify the Static balancing using a steel ball.	CO4				
10.	Verify the Dynamic balancing using steel balls.	CO4				
11.	Whirling of shafts/ determination of critical speed with Rotors.	CO4				
12.	Gyroscopic couple verification.	CO1				

Learning Resources

Text Books: Theory of Machines, (4th Edition) by S.S.Rattan ,Tata Mc.Graw Hill, New Delhi, 2014. Mechanical vibrations, (4th edition) by Singiresu S. Rao Pearson education publications, Delhi, 2004.

Reference Books: Theory of Machines, (5th Edition) by R.K.Bansal, Laxmi Publications(p) ltd. New Delhi, 2010