Course	20EC6601D	Year	III	Semester	II
Code					
Course	HONORS	Branch	ECE	Course Type	THEORY
Category					
Credits	4	L-T-P	3-1-0	Prerequisites	Linear Algebra,
					Random Process
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Understand fundamentals of signal/ parameter detection and estimation principles							
	(L2)							
CO2	Apply suitable detection and estimation techniques to solve the problems of different							
	systems (L3)							
CO3	Analyse the signal and parameter estimation problems to make inferences (L4)							
CO4	Analyse the signal detection problems to support generalizations (L4)							

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- W	Veak c	correla	tion	2-Me	dium o	correla	ation	3-Stro	ong co	orrelati	on			
* - Average	e value	indica	ates co	urse co	orrelati	on stre	ength v	vith m	apped	PO				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3							1	2	2				
CO2	2							1	2	2			2	1
CO3		3						2	2	3			2	1
CO4		3						1	3	2			2	1
Average*														
(Rounded	3	3						1	2	2			2	1
to nearest	5							1	2	2				
integer)														

	Syllabus				
Unit	Contents				
No.		CO			
	Fundamentals of Estimation Theory: Role of Estimation in Signal	CO1,			
	Processing, Unbiased Estimation, Minimum variance unbiased (MVU)	CO2			
	estimators, Finding MVU Estimators, Cramer-Rao Lower Bound, Linear				
	Modelling, Sufficient Statistics, Use of Sufficient Statistics to find the				
Ι	MVU Estimator				
	Experimental Topics-				
	Minimum variance unbiased estimation				
	Cramer-Rao lower bound				
	Generalized MVU				

	Deterministic Parameter Estimation: Least Squares Estimation, Best	CO1- CO3				
	Linear Unbiased Estimation, and Maximum Likelihood Estimation					
II	Experimental Topics-					
	Least Squares Estimation					
	BLUE					
	Random Parameter Estimation: Bayesian Philosophy, Selection of a					
	Prior PDF, Bayesian linear model, Minimum Mean Square Error Estimator,					
	Maximum a Posteriori Estimation	CO1-				
III	Experimental Topics-	CO3				
	Minimum Mean Square Error Estimator					
	Maximum a Posteriori Estimation					
	Hypothesis Testing: Bayes' Detection, MAP Detection, ML Detection,					
	Minimum Probability of Error Criterion, Neyman-Pearson Criterion,					
	Multiple Hypothesis, Composite Hypothesis Testing: Generalized	CO1,				
IV	likelihood ratio test (GLRT), Receiver Operating Characteristic Curves.	CO2,				
	Experimental Topics-	CO4				
	Generalized likelihood ratio test (GLRT)					
	Receiver Operating Characteristic Curves					
	Detection of Signals in White Gaussian Noise (WGN): Binary Detection					
	of Known Signals in WGN, M-ary Detection of Known Signals in WGN,	CO1				
v	Matched Filter Approach	CO1,				
v	Experimental Topics-	CO2, CO4				
	Binary Detection of Known Signals in WGN					
	M-ary Detection of Known Signals in WGN					

Learning Resources

Text Books
1) S. M. Kay, "Fundamentals of Statistical Signal Processing: Estimation Theory", Vol I,
Prentice-Hall, 1993.
2) S. M. Kay, "Fundamentals of Statistical Signal Processing: Detection Theory", Vol II,

2) S. M. Kay, "Fundamentals of Statistical Signal Processing: Detection Theory", Vol II, Prentice-Hall, 1998.

Reference Books

1) H. Vincent Poor, An Introduction to Signal Detection and Estimation, 2nd Ed., Springer, 1998

2) Harry L. Van Trees, Detection, Estimation and Modulation Theory, Part- I, II, & III, John Wiley & Sons, 2004

3) Louis L. Scharf, Statistical Signal Processing: Detection, Estimation and Time Series Analysis, Prentice Hall, 1991

4) Carl W. Helstrom, Elements of Signal Detection & Estimation, Prentice Hall, 1994

5) M. D. Srinath, P. K. Rajasekaran and R. Visawanath, Introduction to Statistical Signal Processing with Applications, Prentice Hall, 1995

6) KungYao, Flavio Lorenzelli, and Chiao-En Chen, Detection and Estimation for Communication and Radar Systems, Cambridge University Press, 2013

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/117/103/117103018/
- 2. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-432-stochastic-processes-detection-and-estimation-spring-2004/
- 3. https://ece.iisc.ac.in/~spchepuri/e1244.html
- 4. https://www.eecs.umich.edu/courses/eecs206/public/lab/lab,all,student.pdf