MICROWAVE ENGINEERING

Course Code	20EC4601C	Year	III	Semester	II
Course	Professional	Branch	ECE	Course Type	Theory
Category	Elective-II		ECE		
Credits	3	L-T-P	3-0-0	Prerequisites	TLWG
Continuous	30	Semester		Total Marks:	100
Internal		End	70		
Evaluation:		Evaluation:			

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO1	Interpret various frequency bands of microwave range and their designations in					
	electromagnetic spectrum and applications of microwaves. [L2]					
CO2	Build microwave tubes for high-power and high-frequency applications. [L3]					
CO3	Identify different types of waveguide passive components and solid state devices for					
	engineering applications.[L3]					
CO4	Analyse Microwave Bench for measurement of various microwave parameters.[L4]					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
* - Average value indicates course correlation strength with mapped PO													
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02								PSO2					
CO1	2										2		2
CO2	3					3	3				3		3
CO3	3				3	3	3				3		3
CO4		2			2	2	2				2		2
Average*													
(Rounded	3				3	3	3				3		3
to nearest	5				5	5	5				5		5
integer)													

Syllabus						
Unit No.	Contents					
Ι	Introduction to microwaves, Electromagnetic Spectrum and Microwave bands, Applications of microwaves, Limitations of conventional Tubes at Microwave Frequencies. Microwave Tubes: Linear Beam Tubes (O-type): Two Cavity Klystron – Velocity Modulation, Bunching Process, Output Power and Efficiency. Reflex Klystrons – Velocity Modulation, Power Output, Efficiency.	CO1,CO2				
II	Helix Traveling-Wave Tubes (TWTs): Slow Wave Structures, Amplification Process (qualitative treatment), Suppression of Oscillations, Gain Considerations. Microwave Crossed Field Tubes (M-Type): Introduction, Cross-field Effects, Cylindrical Traveling Wave Magnetron–Hull Cut-off and Hartree Conditions.	CO1,CO2				

	Microwave Passive Components –Waveguide sections: Matched	ned					
	terminations, waveguide bends, corners and Twists, Coupling Probes and	and					
	Loops, Waveguide Attenuators and Phase Shifters.						
	Waveguide Multiport Junctions: E plane Tee, H plane Tee and Magic						
III	Tee. Directional Couplers.						
	Ferrites - Composition and Characteristics, Faraday rotation, Ferrite	Composition and Characteristics, Faraday rotation, Ferrite					
	omponents – Gyrator, Isolator and Circulator.						
	Scattering Matrix - Significance, Formulation and Properties, S-Matrix of	cance, Formulation and Properties, S-Matrix of					
	Waveguide Tee Junctions, Directional Coupler, Circulator and Isolator.						
	Microwave Solid State Devices: Introduction, Classification,						
	Applications. Transferred Electron Devices: Introduction, Gunn Diodes –						
IV	Principle, RWH Theory, Characteristics, Modes of Operation - Gunn	CO1,CO3					
	Oscillation Modes, Avalanche Transit-Time Devices- IMPATT,						
	TRAPATT and BARITT diodes.						
v	Microwave Measurements: Description of Microwave Bench -						
	ifferent components and their features, Precautions, Power						
	measurement, Attenuation measurement, Impedance Measurement,	CO1,CO4					
	Frequency measurement, VSWR measurement, Measurement of Cavity Q						
	factor.						

Learning Resources

 Text Books

 1. Foundations for Microwave Engineering – R.E. Collin, John Wiley, 2nd Ed., 2005

 2. Samuel Y Liao, "Microwave Devices and Circuits", 3rd Ed, 2003, Pearson Education

Reference Books

1. Annapurna Das, Sisir K. Das, "Microwave Engineering", 2nd Ed., 2006, Tata Mc-Graw Hill

2. Microwave Engineering- David M.Pozar, John Wiley & Sons , Inc., 2nd Ed, 2004

3. Microwave Circuits and Passive Devices – M.L. Sisodia and G.S.Raghuvanshi, Wiley Eastern Ltd., New Age International Publishers Ltd., 1995

4. Microwave Engineering Passive Circuits – Peter A. Rizzi, PHI, 1999

e- Resources & other digital material

1 https://nptel.ac.in/courses/108/103/108103141/

2.http://www.slideshare.net/sarahkrystelle/lecture-notes-microwaves
